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In a recent paper �Stud. Hist. Philos. Mod. Phys. 36, 355 �2005�� it is argued that to properly understand the
thermodynamics of Landauer’s principle it is necessary to extend the concept of logical operations to include
indeterministic operations. Here we examine the thermodynamics of such operations in more detail, extending
the work of Landauer to include indeterministic operations and to include logical states with variable entropies,
temperatures, and mean energies. We derive the most general statement of Landauer’s principle and prove its
universality, extending considerably the validity of previous proofs. This confirms conjectures made that all
logical operations may, in principle, be performed in a thermodynamically reversible fashion, although logi-
cally irreversible operations would require special, practically rather difficult, conditions to do so. We demon-
strate a physical process that can perform any computation without work requirements or heat exchange with
the environment. Many widespread statements of Landauer’s principle are shown to be special cases of our
generalized principle.
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I. INTRODUCTION

Landauer’s principle holds a special place in the thermo-
dynamics of computation. It has been described as “the basic
principle of the thermodynamics of information processing”
�1�. Yet the literature on Landauer’s principle is focused al-
most exclusively on a single, logically irreversible operation
and a particular physical procedure by which this operation
is performed.1

In this paper we seek to analyze the form of Landauer’s
principle in a more general context, building upon the con-
sideration of the thermodynamics of indeterministic logical
operations �2,3�. We will explicitly be considering situations
where logical states do not necessarily have uniform mean
energies, entropies, or even temperatures and we will work
in a framework in which logically reversible and irreversible
and logically deterministic and indeterministic operations
can be treated on an equal footing. Once we have done this
we will have a single framework in which the different as-
pects of Landauer’s principle can be united. Doing so will
help to address criticisms �4,5� of the limited validity of pre-
vious proofs of Landauer’s principle, and criticisms �6� of
the conclusions of �3�.

This will lead us to the following generalization of Lan-
dauer’s principle.

Generalized Landauer’s principle
A physical implementation of a logical transformation of

information has minimal expectation value of the work re-
quirement given by

��W� � ��E� − T�S , �1�

where ��E� is the change in the mean internal energy of the
information processing system, �S the change in the Gibbs–
von Neumann entropy of that system, and T the temperature
of the heat bath into which any heat is absorbed. The equality
is reachable, in principle, by any logical transformation of
information, and if the equality is reached the physical
implementation is thermodynamically reversible.

We start by considering what we mean by a logical state,
a logical operation, and the requirements for a physical sys-
tem to be an embodiment of such an operation. We will be
considering only the processing of discrete, classical infor-
mation here, although we will be assuming the fundamental
physics is quantum.2

We then construct an explicit physical process, based
upon the familiar “atom in a box” model, that implements a
generic logical operation. Thermodynamic optimization of
this model will, in general, require consideration of the prob-
ability distribution over the input logical states. As this prob-
ability distribution is also required to quantify the Shannon
information stored in the system, we will refer to the combi-
nation of the logical operation and the probability distribu-
tion as a logical transformation of information. The optimal
implementation, using the atom in a box physical process,
shows that the above limit is reachable in principle. We then
demonstrate that this limit cannot be exceeded by any system
evolving according to a Hamiltonian evolution.

We then consider in more detail the implications of this
limit, including several special cases that correspond to more
familiar expressions of Landauer’s principle, when the physi-
cal implementation conforms to a set of conditions which we
refer to as “uniform computing.” We will show a less famil-

*o.maroney@usyd.edu.au
1Although there is little consensus on the naming of these, we will

refer to the logical operation as reset to zero �or RTZ� and the widely
used physical process which embodies this operation will be re-
ferred to as Landauer erasure �or LE�.

2The analysis would proceed largely unchanged for classical phys-
ics, but it would be unnecessarily cumbersome to attempt both. See
�7� for a classical treatment.
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iar set of conditions, which are nevertheless physically pos-
sible, which we call “adiabatic equilibrium computing,” and
which can embody any logical operation without either ex-
changing heat with the environment or requiring work to be
performed. We conclude that any logical transformation of
information can be performed in a thermodynamically re-
versible manner. As this conclusion may seem surprising, we
discuss some of the practical barriers to achieving this and
the particular problems presented by logically irreversible
operations.

II. LOGICAL STATES AND OPERATIONS

Although Landauer’s principle is about the thermodynam-
ics of information processing, very little of the literature sur-
rounding it attempts to define what is meant by a logical
operation and what are then the minimal requirements of a
physical system for it to be regarded as the embodiment of a
logical operation. Without first answering this question, it
cannot be certain that the most general relationship between
information and thermodynamics has been discovered. In
this section the abstract properties of logical states and op-
erations will be considered. This leads to constraints upon a
physical system which is required to embody the logical
states and operations.

A. Logical states

A logical state simply consists of a variable �, which
takes a value from a set �1, . . . ,n�. If the variable � takes the
value x then this means that the logical proposition repre-
sented by the statement �=x is true. This paper will consider
only classical information processing on finite machines.
This produces additional properties, whose assumption is
usually implicit.3

�1� The set of values is a finite set �and, by implication,
discrete�.

�2� The values are distinct. In any given instance the vari-
able takes one, and only one, of the possible values.

�3� The values are distinguishable. In any given instance
the value taken by the variable can be ascertained.

�4� The values are stable. The value taken by the variable
cannot change except as a result of a logical operation.

B. Logical operations

A logical operation LO maps input logical states from the
set ��� to output logical states from the set ���:

LO: � → � . �2�

The number of input and output states need not be the same.
The output states from one logical operation may be used as
input states to another logical operation. Tables I and II show
the maps for two of the most commonly4 encountered logical
operations that act upon two input states 0 and 1, the NOT

operation and the reset to zero �RTZ� operation. These rules
can be represented by

NOT: 0 → 1,

NOT: 1 → 0,

RTZ: �0,1� → 0, �3�

where use has been made of the fact that the RTZ operation
transforms both input states into the 0 output state. The RTZ

operation is logically irreversible. We shall call a device
logically irreversible if the output of a device does not
uniquely define the inputs. �8�

If multivalued maps �see �9� Sec. VI A, for example� are
to be considered, it is necessary to also define logically
indeterministic5 computation: We shall call a device logically
indeterministic if the input of a device does not uniquely
define the outputs.

Logically indeterministic operations such as unset from
zero �UFZ� and randomize �RND� are given in Tables III and
IV; they follow the rules

UFZ: 0 → �0,1� ,

RND: �0,1� → �0,1� . �4�

UFZ is logically reversible, while RND is logically irrevers-
ible.

Logically indeterministic operations are perhaps less com-
monly encountered than logically deterministic operations,
and it has been questioned whether these are really logical
operations �the authors of �6�, for example, take it as part of

3For analog or quantum information processing some of these
assumptions can be relaxed. We will not consider the consequences
of this here.

4There is an even more trivial logical operation: logical do noth-
ing IDN. Including this as a logical operation is not a trivial step, as
this is the identity operator. It must also be included as a time delay
operator when one considers a sequence of logical operations.

5In �3� the term “nondeterministic” was used. Unfortunately, this
term has a specific usage in computational complexity classes,
which does not quite correspond to the usage here. To attempt to
avoid confusion, we have changed our terminology to “indetermin-
istic.” In terms of computational complexity classes, this is closest
to probabilistic computation. We hope this does not simply intro-
duce more confusion.

TABLE I. Logical NOT operation.

NOT

In Out

0 1

1 0

TABLE II. Reset to zero operation.

RTZ

In Out

0 0

1 0
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the definition of a logical operation that it be a single-valued
map�. We include them for a number of reasons.

�1� Most importantly, such operations play a significant
role in the theory of computational complexity classes for
actual computers. The complexity class bounded error proba-
bilistic polynomial time �BPP� represents a class of compu-
tational problems for which the inclusion of logically inde-
terministic operations can produce an accurate answer
exponentially faster than any known algorithm consisting
only of logically deterministic operations �see �12�, Sec.
III B 2, for example�. Excluding them excludes a genuine
class of computational procedures.

�2� By including them we are able to derive a more co-
herent general framework for the thermodynamics of com-
putation. Excluding them creates an artificial asymmetry, and
physical properties ascribed to logically irreversible opera-
tions in the literature may be artefacts of the asymmetry
caused by this exclusion.

�3� Logically indeterministic transformations of informa-
tion involve the use of probabilistic inferences. There is a
point of view �10,11� that regards probabilistic inferences as
a natural generalization of deductive logical inferences;

�4� Finally, there seems no special reason not to include
them as they form a natural counterpart to the concept of
logically irreversible operations. Any conclusion we can
draw that applies to the set of all such logical operations
must necessarily apply to all logically deterministic opera-
tions. Including logically indeterministic operations in our
analysis will not invalidate its applicability to logically de-
terministic operations.

C. Logical transformation of information

To quantify the information being processed by the logi-
cal operation, the Shannon information measure will be used.
This requires the specification of a probability distribution
over the input and output states. If the logical states input to
a computation occur with probabilities P���, then the Shan-
non information represented by the input states is

H� = − 	
�

P���log2 P��� . �5�

During the logical operation these input states are trans-
formed into output states �. When an input state may be
transformed into more than one output state, one must
specify the probability P�� 
�� for each possible output state.
For logically deterministic operations, specifying P�� 
�� is
trivial as ∀ � ∃ � P�� 
��=1 �or equivalently ∀ � ∃ �
�∀ ����P��� 
��=0��. Specifying all the nonzero P�� 
��
completely specifies the rules of the logical operation. We

will therefore take the set �P�� 
��� as the definition of a
general logical operation. For logically deterministic opera-
tions, this is the list of all combinations of input and output
states that have conditional probability 1, which is simply the
truth table for the operation.

After the logical operation, the output states � will occur
with probability

P��� = 	
�

P��
��P��� , �6�

so the Shannon information represented by the output states
is

H� = − 	
�

P���log2 P��� . �7�

When we refer to a logical transformation of information, we
will mean a logical operation, acting upon input states6 ���,
that occur with probabilities P���, which transforms the in-
put states to output states ��� with conditional probabilities
P�� 
��.

The conditional probability that a given output state �
was generated by the input state � is

P��
�� =
P���P��
��

P���
�8�

and the joint probability that there was an input state � and
output state � is

P��,�� = P���P��
�� = P���P��
�� . �9�

This gives an equivalent formulation of logical determinism
and logical reversibility. A logically deterministic computa-
tion is one for which

∀ �,� P��
�� � �0,1� . �10�

A logically reversible computation is one for which

∀ �,� P��
�� � �0,1� . �11�

This is defined in terms of the set �P�� 
���. A logical opera-
tion has been defined only by the set �P�� 
���, with the
P�� 
�� dependent upon the input logical state probabilities
P���.

From

P��
�� = 0 ⇒ P��,�� = P��
�� = 0,

6For simplicity, input states for which P���=0, i.e., which are
certain to not occur, will not be included in this set.

TABLE III. Unset from zero operation.

UFZ

In Out

0 0

0 1

TABLE IV. Randomization.

RND

In Out

0 0

0 1

1 0

1 1
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P��
�� = 1 ⇒ P��� � �
�� = 0

⇒P��� � �,�� = P��
�� � �� = 0, �12�

there is an equivalent definition of logically reversible com-
putations. An operation is logically reversible if and only if

∀ � �P��
�� � 0 ⇒ �∀ �� � �P��
��� = 0�� . �13�

This definition is now independent of the input probability
distribution.

We summarize these properties and some consequences.

1. Logically deterministic operations

∀ �,� P��
�� � �0,1� ,

∀ � �P��
�� � 0 ⇒ �∀ �� � �P��
��� = 0�� ,

∀ �,� P��
�� � �0,
P���
P���� . �14�

In the case where a particular �→� transition has P�� 
��
=1, we may refer to this as a logically deterministic transi-
tion, even if the overall operation is not logically determin-
istic.

2. Logically reversible operations

∀ �,� P��
�� � �0,1� ,

∀ � �P��
�� � 0 ⇒ �∀ �� � �P��
��� = 0�� ,

∀ �,� P��
�� � �0,
P���
P���� . �15�

In the case where a particular �→� transition has P�� 
��
=1, we may refer to this as a logically reversible transition,
even if the overall operation is not logically reversible.

D. Physical representation of logical states

We will now consider what the properties above imply for
the physical embodiment of logical states and operations
upon them. The physical system will have a state space of
possible microstates ���. How can these be used to embody
the logical states?

�1� A particular logical state � will be identified with a set
of microstates ���� in the state space, in the sense that, when
the physical state of the system is one of the microstates �
� ����, then the logical state takes the value �.

�2� As logical states are distinct, a given microstate can be
identified with one, and only one, input state. Each set of
microstates ���� is therefore nonintersecting with any other
such set of microstates:

���� � ������� = � . �16�

�3� For the logical states to be distinguishable, it is nec-
essary that it is possible to ascertain the set to which the
microstate belongs. We are not considering analog informa-

tion processing, so the physical interactions must not need to
be sensitive to arbitrarily close �using a natural distance mea-
sure� states in state space. We replace the point in state space,
�, with the neighborhood of that point, R���. The logical
state � is now identified with the region of state space cor-
responding to the union of all the neighborhoods �R�����.
The neighborhoods corresponding to different logical states
must be nonoverlapping.

�4� We can now identify the proposition for the logical
state � with the projector K� onto the region of state space
�R�����:

K�K�� = ����K�,

	
�

K� = I ,

K��R����� = R���� ,

K��R�������� = 0. �17�

The proposition � is true if the state � is in the region of
state space �R����� projected out by K�.

�5� For the physical representation of the logical states to
be complete, then it must also be the case that, if the state �
is in the region of state space �R����� projected out by K�,
then the logical proposition corresponding to the logical state
� is true.

�6� For the logical states to be stable, then under the nor-
mal evolution of the system, a microstate within the region
of state space corresponding to a given logical state must
stay within that region of state space.7 The normal evolution
of the system is, trivially, a physical embodiment of the logi-
cal do nothing IDN operation.

E. Physical representation of logical operations

During the normal evolution of a system, logical states do
not change. To perform nontrivial logical operations new in-
teractions must alter the evolution of the state space. All the
essential characteristics of a logical operation are included in
the set �P�� 
���. It follows that a physical process is an
embodiment of a logical operation if and only if the evolu-
tion of the microstates in the physical process is such that,
over an ensemble of microstates in the region �R�����, the
probability that the microstate ends up in the region �R�����
is just P�� 
��.

�1� We will assume that the laws of physics are Hamil-
tonian. The evolution of microstates over the state space of
the combined system of the logical processing apparatus and
the environment must be described by a Hamiltonian evolu-
tion operator.

�2� If the interaction of the microstates of the system and
the environment is such that any individual microstate ��

7A weaker condition, acceptable for most practical needs, is that
the probability of the microstate leaving the region of a given logi-
cal state, during the time scale of the information processing, must
be very low.
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starting in state � is randomized so that it ends up in the
output state � with probability P�� 
��, then we do not need
to be sensitive to the initial probability distribution of the
ensemble of microstates within the logical state �. In gen-
eral, however, we may need to be sensitive to the initial
probability distribution �� over microstates corresponding to
the logical state �.

�3� The complete statistical state of the logical processing
system input to the logical operation is

	
�

P����� �18�

where

∀ �, K���K� = ��. �19�

�4� The complete statistical state of the logical processing
system output from the logical operation is required to be

	
�

P����� �20�

where

∀ �, K���K� = ��. �21�

We have not considered separate systems for the logical in-
put states, the logical processing apparatus or the output
states. At first, this seems to assume that the system embody-
ing the logical input states must be the same as the system
embodying the logical output states and that the logical pro-
cessing apparatus cannot have internal states—which would
seem to be quite a strong restriction. This is not the case. Let
us consider the case where there are three distinct systems:
the input state system, with states ����; an output state sys-
tem, with states ����; and an auxiliary system corresponding
to all internal and external components of the process, with
states ��app�.

The statistical state is described at the start of the opera-
tion by

	
�

P����� � 	
�

f���
app

� ��, �22�

where we have assumed that the input state system is ini-
tially uncorrelated to the apparatus but have not assumed the
output state system is initially uncorrelated to the internal
states ���

app� of the apparatus. The effect of the operation
would be to evolve the combined system into some new
correlated state, combining the three systems:

	
�,�

P��,����,�� � ��,�
app

� ��. �23�

Our approach here is then to consider the state space of
the combined system of input, output, and apparatus as a
single state space, with input states for � of

�� � �	 w���
app

� ��� �24�

and output states for � of

	
�

P��,����,�� � ��,�
app� � ��. �25�

We then consider a Hamiltonian evolution on the combined
state space to be the operation. This cleanly separates the
logical states, embodied by the physical state of the com-
bined state space, from the logical operation, embodied by
the Hamiltonian evolution on that state space. We have not
restricted ourselves by the assumption of a Hamiltonian evo-
lution on a single state space, as we have the full generality
of all possible Hamiltonian interactions allowed between the
input state system, the output state system, and the logical
processing apparatus. We have avoided, on the other hand,
any need to consider the restrictions and complications that
would arise if we constructed models based upon specific
assumptions as to how the input state, output state, and logi-
cal processing apparatus systems are allowed to interact.
This completes the physical characterization of logical states
and operations.

F. Logical vs microscopic determinism and reversibility

There is one final issue that needs to be stated, for the
sake of clarity, regarding the �absence of a� relationship be-
tween logical and microscopic indeterminism and irrevers-
ibility.

Logical indeterminism does not imply or require the exis-
tence of any fundamental indeterminism in the microscopic
dynamics of the physical states. Neither is logical determin-
ism incompatible with the existence of fundamental indeter-
ministic dynamics.

A specific microstate from the input logical state may
evolve deterministically into a specific microstate of an out-
put logical state, while the operation remains logically inde-
terministic, provided the set of the input microstates corre-
sponding to the same input logical state do not all evolve,
with certainty, into microstates of the same output logical
state.

A specific microstate from an input logical state may
evolve indeterministically into a number of possible mi-
crostates, while the operation remains logically determinis-
tic, provided that the set of the input microstates correspond-
ing to the same input logical state can only evolve into
microstates from the set corresponding to the same output
logical state.

Logical irreversibility does not imply or require the exis-
tence of any fundamental irreversibility in the microscopic
dynamics of the physical states. Neither is logical reversibil-
ity incompatible with the existence of fundamental irrevers-
ible dynamics.

A specific microstate from the input logical state may
evolve reversibly into a specific microstate of an output logi-
cal state, while the operation remains logically irreversible,
provided the set of the microstates corresponding to the same
output logical state have not all evolved, with certainty, from
microstates of the same input logical state. A specific mi-
crostate from an input logical state may evolve irreversibly
into a specific microstate, while the operation remains logi-
cally reversible, provided that the set of microstates corre-
sponding to the same output logical state can only have
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evolved from microstates in the set corresponding to the
same input logical state.

III. THERMODYNAMICS OF LOGICAL OPERATIONS

We now undertake the main task of this paper: to deter-
mine the limiting thermodynamic cost to a logical operation.
We will do this in two steps.

First, we will construct a physical process, capable of
implementing any logical operation, as we have defined
them, and we will consider the optimum thermodynamic cost
to the process. This optimum will be considered in two ways:
for individual transitions between specific logical states; and
as an expectation value over an ensemble of operations. Both
work required to perform the process and heat generated by
the process will be calculated, where it is assumed that all
heat generated is absorbed by a heat bath at some reference
temperature TR.

To calculate the expectation values, we must consider the
probability distribution over the input logical states. For this
we will use the probability distribution used to calculate the
Shannon information being processed. The optimum process
will, of necessity, involve various idealizations �such as fric-
tionless motion and quasistatic processes� that cannot be
achieved in practice. The purpose is to demonstrate not that
it is possible to build such optimal operations, but rather that
there is no physical limitation, in principle, on how close one
can get to them.

Then we will prove that there cannot exist any physical
process that can implement the same logical transformation
of information, but with a lower expectation value for either
the work requirement or the heat generation. The optimum
process, for our particular implementation of a logical trans-
formation of information, is also the optimum for any pos-
sible implementation of that transformation.

A. Statistical mechanical assumptions

We will now clearly state the statistical mechanical as-
sumptions that are being made. There are a number of dif-
ferent approaches to the foundations of statistical mechanics
and, as the models discussed here involve such idealizations
as the treatment of individual atoms, it is important to be
clear which approach is being taken. In this paper we will
assume the standard structure of Gibbs canonical statistical
mechanics: we will be dealing with Hamiltonian flows with
probability distributions over a state space, we will assume
that a system that has been thermalized can be represented by
a canonical distribution over its accessible state space, and
will be initially statistically independent of any other system.
While these assumptions are clearly open to debate, a full
discussion or justification of them lies outside the scope of
this paper �although see �13��.

�1� The system consists of the logical processing appara-
tus �including auxiliary systems as discussed in Sec. II E�
and a number of heat baths. A heat bath is simply a system
that has been allowed to thermalize at some temperature and
is sufficiently large that any energy transfer with the logical
processing apparatus will have negligible effect upon the

heat baths’ internal energy. The Hamiltonian for the com-
bined system is

H = HL + 	
i

�Hi + Vi� , �26�

where HL is the internal Hamiltonian for the logical process-
ing apparatus, Hi the internal Hamiltonian of the heat bath i,
and Vi the interaction Hamiltonian between the logical pro-
cessing apparatus and the heat bath i. We assume there is no
interaction between heat baths. The density matrix of the
combined system is �C, and �L is the marginal density matrix
after tracing over the heat bath subsystems.

�2� Work is performed upon the apparatus through the
variation of some externally controlled parameter X, which
affects the energy eigenvalues and eigenstates,8

HL�X� = 	
n

En�X�
En�X���En�X�
 . �27�

The mean work performed as the parameter is varied from X0
to X1 is given by

�W = �
X0

X1

Tr �HL�X�
�X

�L�X��dX . �28�

Note that the density matrix �L may be varying as X varies.
We will assume that neither the internal Hamiltonians of the
heat baths nor the interaction Hamiltonians have controllable
parameters: work is performed only upon the logical pro-
cessing apparatus itself.

�3� The mean change in internal energy of the logical
processing apparatus is

�E = Tr�HL�X1��L�X1�� − Tr�HL�X0��L�X0�� . �29�

�4� If we now assume negligible changes in interaction
energies,

∀i Tr�Vi�C�X1�� � Tr�Vi�C�X0�� , �30�

then

�W − �E = 	
i

�Qi, �31�

where

�Qi = Tr�Hi�i�X1�� − Tr�Hi�i�X0�� �32�

is the increase in internal energy of the heat bath i, and �i is
the marginal density matrix of the heat bath, after tracing
over the logical processing apparatus and all other heat
baths.

�5� If the evolution of the density matrix is such that it
always remains diagonalized by the energy eigenstate basis,
so that

�L�X� = 	
n

pn�X�
En�X���En�X�
 , �33�

then

8More generally, one should consider a number of controllable
parameters, which are each varying in time.
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�W = �
X0

X1

	
n

pn�X�
�En�X�

�X
dX , �34�

	
i

�Qi = �
X0

X1

	
n

�pn�X�
�X

En�X�dX . �35�

It is important to note that these five points make no assump-
tion regarding the identification of either thermodynamic en-
tropy or thermal distributions. Neither the canonical distribu-
tion nor the Gibbs–von Neumann entropy has been used.

The following results depend upon the assumption that a
heat bath is represented by a canonical distribution and that a
limiting ideal case exists of thermalization through a succes-
sion of brief interactions with small subsystems of a heat
bath. The calculations are well known �see �13–15�, for ex-
ample� and the results are stated here purely for clarity. No
formal identification of the Gibbs–von Neumann entropy
with thermodynamic entropy is required to derive these re-
sults.

�6� A system that is brought into contact with an ideal heat
bath will, over time periods long with respect to its thermal
relaxation time, be well represented by a canonical probabil-
ity distribution

�� =
e−H/kT

Tr�e−H/kT�
�36�

over accessible states of the system, with T being the tem-
perature of the heat bath and H the Hamiltonian of the sys-
tem over the accessible subspace.

�7� In the limit of isothermal quasistatic processes, the
system is in contact with an ideal heat bath at some tempera-
ture, and the system stays in thermal equilibrium with the
heat bath at all times.

�8� In the limit of adiabatic quasistatic processes �or es-
sentially isolated �14� processes� the system always remains
in a �canonically distributed� thermal state but there is zero
mean energy flow out of the system ��W=�E�. The tem-
perature of this state may vary.

�9� We will assume that the only systems with which the
information processing system interacts are ideal heat baths
at temperatures �T��, �T��, and TR, and a work reservoir, and
that there are no initial correlations between the system and
the heat baths.

While these assumptions involve significant idealizations,
they are the kind of idealizations that are standard in thermo-
dynamics and statistical mechanics. Rather than representing
a physically achievable process, they represent the limit of
what can be physically achieved. There is no physical reason
why one cannot, in principle, get arbitrarily close to these
results.

Although the value of the Gibbs–von Neumann entropy
−kTr�� ln���� will be calculated for the input and output logi-
cal states, all results in this section, in terms of work required
and heat generated, are derivable, from the assumptions

stated, without needing to identify this property with thermo-
dynamic entropy.9

B. Generic logical operation

1. Input logical states

We start the operation with the logical states represented
by physical states with the following properties.

�1� An input logical state � to the logical computation is
physically embodied by a system confined to some region of
state space. The distribution over the microstates of that re-
gion gives the density matrix ��.

�2� �� has mean energy E�=Tr�HL���=Tr�H����, where
H�=K�HLK�.

�3� For simplicity, in the main section, we will assume
that the input logical state � is canonically distributed, as if it
has been thermalized with a heat bath at temperature T�,

�� =
e−H�/kT�

Tr�e−H�/kT��
. �37�

This assumption is not essential, and can easily be relaxed
without affecting any result. If the initial density matrix is
not a canonical distribution, then it is possible to construct a
unitary operator that acts upon the system in isolation and
rotates it into a canonical state, with neither heat nor work
requirement.

To give an explicit construction, suppose the initial
Hamiltonian and density matrix are H�

�i� and ��
�i�, such that

��
�i� �

e−H�
�i�/kT�

Tr�e−H�
�i�/kT��

�38�

for any T�. Given the diagonal representation

��
�i� = 	

n

pn
	n��	n
 , �39�

then the Hamiltonian, acting in the range 0
 t
�,

HA = �cos2�t

2�
� − sin2�t

�
��H�

�i� + �sin2�t

2�
�

− sin2�t

�
��H� −

2ı

�
sin2�t

�
�ln	

n


�n��	n
�
�40�

with

H� = 	
n

En
�n���n
 , �41�

En = E� − kT�ln�pn� − 	
m

pm ln�pm�� , �42�

varies continuously from H�
�i� to H�, and has the effect of

leaving the system, after time �, in the stationary canonical
state

9See �2� and �13� �Chap. 6�, where this kind of calculation is
carried out in detail for the same kinds of system considered here.
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�� =
e−H�/kT�

Tr�e−H�/kT��
= 	

n

pn
�n���n
 . �43�

�� is unitarily equivalent to ��
�i� and Tr�H����=Tr�H�

�i���
�i��.

The mean work requirement is zero and no heat is exchanged
with the environment. It should be noted that this construc-
tion holds even if ��

�i� is not diagonalized in the eigenstates of
H�

�i�.
�4� The Gibbs–von Neumann entropy of the input logical

state is: S�=−k Tr��� ln�����.
�5� There are M possible input logical states.

2. Output logical states

The output logical states may be similarly characterized
as follows.

�1� An output logical state � from the logical computation
is physically embodied by a system confined to some region
of state space. The distribution over the microstates of that
region gives the density matrix ��.

�2� �� has mean energy E�=Tr�HL����=Tr�H�����, where
H�� =K�HL�K�.

�3� Again, for convenience we will assume that the output
logical state � is canonically distributed as if it has been
thermalized at a temperature T�. This will make the density
matrix

�� =
e−H�� /kT�

Tr�e−H�� /kT��
. �44�

Again, this assumption is easily dropped. If the final state is
required to be a noncanonical density matrix ��

�f�, with
Hamiltonian H�

�f�, then ��
�f� can be obtained from �� by con-

structing H�� and HB in the same manner as H� and HA
above.

�4� The Gibbs–von Neumann entropy of the output logical
state is S�=−k Tr��� ln�����.

�5� There are N possible output logical states.
�6� The output logical state � must occur with probability

P�� 
�� given input logical state �.
We will also note here that probabilities enter the calcu-

lation at two levels: as a probability distribution over the
microstates within a given logical state, and as a probability
distribution over the different logical states. We will attempt
to keep these formally separate. From this point onward, the
microstate probability will be represented only by the density
matrix. Explicitly appearing probabilities and averages will
always refer to the probability distribution over the logical
states.

C. The transformation of information

If we consider the actual microstate of the system, within
the region corresponding to a given logical state, as being
some free10 parameter, then the physical representation of
each logical state may initially be regarded as a potential
well with some arbitrary shape, such that the free parameter

is confined within the well. The potential wells associated
with different logical states are in different regions of physi-
cal space, separated by high potential barriers, such that there
is a very low possibility of transitions between different logi-
cal states.

This can be represented as an atom in one of a number of
boxes, where the free parameter is the location of the atom in
the box. The logical state is represented by the particular
box, or potential well, within which the atom is confined.
The physical transformation of the information will take
place in nine steps. Steps 1–3 will bring the input logical
states into standardized physical states at a shared reference
temperature. Step 4 is the logically indeterministic imple-
mentation of the P�� 
�� transition. Steps 5 and 6 implement
the joining together of the � output states from the different
� input states, giving the logically irreversible stage. Steps
6–9 then alter each output logical state to the required final
physical state.

Calculations for work requirements, heat generation, and
so forth follow the statistical mechanical calculations above.
Particularly detailed calculations for atom in a box type sys-
tems are considered in references such as �2,16–18�. The key
results can be summarized. The Hamiltonian for an infinite
square well potential, of width l, holding an atom of mass m
is

H�l� = 	
n

2�2

8ml2 n2
En��En
 . �45�

Work is performed upon the system by varying the l param-
eter �width of the box�.

In a canonical thermal state at temperature T, the mean
energy is

E =

	
n

2�2

8ml2 n2e−�2�2/8ml2kT�n2

	n
e−�2�2/8ml2kT�n2 �

1

2
kT , �46�

and the Gibbs–von Neumann entropy is

S =

	
n

2�2

8ml2T
n2e−�2�2/8ml2kT�n2

	
n

e−�2�2/8ml2kT�n2 + k ln	
n

e−�2�2/8ml2kT�n2�
�

k

2
ln2emkTl2

�2 � . �47�

The approximations hold when the temperature is high with
respect to the ground state:

kT �
�2

2em
. �48�

�1� The first step is to continuously and slowly deform the
potential well of each separate logical state into a square well
potential. The square well should be deformed to width d�

�1�,10Not externally controlled.
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d�
�1� = � �2

2emkT�
�eS�/k, �49�

where m is the mass of the atom. This state has mean energy
and entropy

E�
�1� =

1

2
kT�,

S�
�1� = S�. �50�

If this deformation is carried out sufficiently slowly, the
mean heat generation is zero and the work requirement is

W�
�1� =

1

2
kT� − E�. �51�

This is a mean work requirement for the operation. Fluctua-
tions may occur around this value.

The system may now be pictured as a box, divided with
M −1 partitions. When the atom is located between the �
−1 and � partitions, the system is in logical state �. This can
be seen in Fig. 1�a�.

�2� Remove the system from all contact with heat baths
and then, slowly, adiabatically vary the width of each square
well to d�

�2�:

d�
�2� = d�

�1��T�

TR
. �52�

At the limit of a slow, quasistatic process, this will leave
each logical state with a density matrix equal to a canonical
thermal system with temperature TR. The mean energy, en-
tropy, and mean work requirements are

E�
�2� =

1

2
kTR,

S�
�2� = k ln�d�

�2��2emkTR

�2 �� = S�,

W�
�2� =

1

2
kTR −

1

2
kT�. �53�

As the total width of the box is now

L = 	
��

d��
�2� = � �2

2emkTR
�	

��

eS��/k, �54�

then

d�
�2� = L

eS�/k

	
��

eS��/k
. �55�

�3� Now bring the entire system into contact with heat
baths at the reference temperature TR. Slowly and isother-
mally move the positions of the potential barriers separating
the square wells �see Figs. 1�a� and 1�b��. Move the ith bar-
rier to the position xi:

xi = L	
�=1

�=i

w�, �56�

where 	�w�=1. The values of w� have not been specified.
Variation of these will be used to optimize the operation.

Each logical state now has a width d�
�3�=w�L. If w�=0 for

one of the input states � this stage will compress the volume
of that state to zero. Clearly this can only be allowed to take
place if there is no possibility that the partition is occupied
by the atom.

E�
�3� =

1

2
kTR,

S�
�3� = k ln�d�

�3��2emkTR

�2 �� ,

W�
�3� = kTR lnd�

�3�

d�
�2�� ,

Q�
�3� = kTR lnd�

�3�

d�
�2�� , �57�

where Q�
�3� is the heat generated in the heat bath if the atom

is in the � partition.
�4� Insert N−1 new potential barriers slowly into each

partition. Within a given partition �, the barriers should be
spaced according to the probabilities P�� 
�� of the logical
operation �see Fig. 2�. They have a width

d�,�
�4� = P��
��w�L . �58�

This is the logically indeterministic step of the computation,
in Figs. 1�b� and 1�c�. There are M partitions, each with N
subpartitions.

If the atom was located in partition � beforehand, and the
system has been allowed to thermalize at temperature TR for
a period of time greater than the thermal relaxation time,
then the probability of the atom now being located in the
�� ,�� subpartition is P�� 
��. For logically deterministic op-

FIG. 1. Arranging input states.
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erations, then all nonzero P�� 
�� are equal to 1 and no par-
titions need be inserted.

The mean energy and the entropy associated with the
atom located within a particular �� ,�� subpartition is

E�,�
�4� =

1

2
kTR,

S�,�
�4� = k ln�d�,�

�4� �2emkTR

�2 �� . �59�

�5� Now rearrange the subpartitions so that, for each �, all
the � output partitions are adjacent. From each � partition,
we gather the first subpartitions, corresponding to output
logical state �=1, and collect them together. Repeat this for
each set of � subpartitions, from all the � partitions. Finally
this produces a sequence of N � partitions, each with M �
subpartitions. This is illustrated in Fig. 3.

�6� Remove the potential barriers within each � output
partition and leave the box for a time that is long in com-
parison to the atoms’ thermal relaxation time. The � partition
has a width

d�
�6� = w�L , �60�

where

w� = 	
�

w�P��
�� , �61�

and if the atom is located in the � partition, then

E�
�6� =

1

2
kTR,

S�
�6� = k ln�d�

�6��2emkTR

�2 �� . �62�

This is the logically irreversible stage and is illustrated in
Figs. 4�a� and 4�b�. This stage is trivial for logically revers-
ible computations, for which each � output partition is com-
posed of only one � subpartition, and so has no internal
barriers. Note also that, if ∀ � , P�� 
��=0, then the atom
can never be located in the � partition.

�7� Now slowly and isothermally resize the output parti-
tions. The barriers should be moved until the � partition has
width

d�
�7� = � �2

2emkTR
�eS�/k. �63�

See Figs. 4�b� and 4�c�.
The overall width of the box may be changed by this

operation, and is now

L� = 	
��

d��
�7� = L

	
��

expS��/k

	
��

expS��/k
. �64�

so that

d�
�7� = L�

eS�/k

	
��

expS��/k
. �65�

For the atom located in the � partition, we have

FIG. 2. Inserting subpartitions.

a

b

FIG. 3. Rearranging the partitions.

a

b

c

FIG. 4. Arranging the output states
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E�
�7� =

1

2
kTR,

S�
�7� = k ln�d�

�7��2emkTR

�2 �� = S�,

W�
�7� = kTR lnd�

�7�

d�
�6�� ,

Q�
�7� = kTR lnd�

�7�

d�
�6�� , �66�

where Q�
�7� is the heat generated in the heat bath.

�8� Now remove all contact from the TR heat baths. With
the system thermally isolated, slowly and adiabatic resize the
output partitions to the widths

d�
�8� = d�

�7��TR

T�

. �67�

If the atom is in the � partition, the effect of this quasistatic,
adiabatic evolution is to leave the atom in a canonical ther-
mal state with temperature T�,

E�
�8� =

1

2
kT�,

S�
�8� = S�,

W�
�8� =

1

2
kT� −

1

2
kTR. �68�

�9� The output logical states � are now all at the required
temperature and entropy. For completeness, bring each sepa-
rate � partition into thermal contact with a heat bath at the
appropriate temperature T� and slowly, continuously, and
isothermally deform the shape of each square well potential
into the final potential for the output logical state:

E�
�9� = E�,

S�
�9� = S�,

W�
�9� = E� −

1

2
kT�. �69�

This completes the physical implementation of the logical
operation.

D. Thermodynamic costs

The procedure detailed in the previous section satisfies the
requirements of a generic logical operation. The input logical
states are represented by the appropriate physical input
states, the output logical states are represented by the appro-
priate physical output states, and the transitions between
them occur with probabilities P�� 
��.

1. Individual transitions

Addition of the work and heat values across all steps, for
a system which starts in logical state � and ends in logical
state �, gives

�W�,� = �E� − TRS�� − �E� − TRS�� + kTR lnw�

w�
� ,

�Q�,� = TR�S� − S� + k lnw�

w�
�� . �70�

�1� For a logically reversible transition,

w�

w�

= P��
�� , �71�

and so is independent of the choice of w�. If the transition is
also logically deterministic, P�� 
��=1 and the logarithmic
term is zero. The work requirements are

�W�,� = �E� − TRS�� − �E� − TRS�� . �72�

�2� If the logically reversible transition is indeterministic,
the work requirement is reduced by the quantity
−kTR ln�P�� 
���. If P�� 
�� is small, this term can be large,
even to the extent of making the work requirement negative
�i.e., implying work may be extracted from the process�.

�3� Now consider logically irreversible transitions. When
the transition is logically deterministic, w� is the sum of all
the w� values where the transition is permitted. It is therefore
always the case that w� /w��1. This implies an increased
work requirement compared to a logically reversible, deter-
ministic transition between equivalent �� ,�� states.

�4� Finally, logically irreversible, indeterministic transi-
tions may, in principle, take values for w� /w� both above
and below 1.

Let us consider optimizing the thermodynamic cost of an
individual �→� transition. The only free variables are the
w�. For logically reversible transitions, these have no effect
and the cost is always

�W�,� = �E� − TRS�� − �E� − TRS�� + kTR ln�P��
��� ,

�Q�,� = TR�S� − S� + k ln�P��
���� . �73�

For logically irreversible transitions, the quantity w� /w�

should be made as small as possible, subject to the constraint
that 	�w�=1. From w�=	��w��P�� 
��� it must be the case
that

w� � w�P��
�� . �74�

Equality is reached by setting w��=0 for all the input logical
states ���� where P�� 
����0. This gives w�=w�P�� 
��.
If the transition is a logically deterministic one, w� /w�=1,
otherwise w� /w�
1, and the work requirement is reduced
�as for a logically reversible, indeterministic transition�. The
result is similar to that for logically reversible transitions:

�W�,� � �E� − TRS�� − �E� − TRS�� + kTR ln�P��
��� ,

�Q�,� � TR�S� − S� + k ln�P��
���� . �75�
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2. Expectation values

The problem with optimization for an individual transi-
tion is that this can go catastrophically wrong if the operation
is performed upon any of the other �� input logical states.
For logically irreversible processes, as w��→0, then
�W��,�→�.

We need to consider an optimization over the full set of
input logical states, rather than with respect to a single input
logical state. For the set of all possible transitions, we will
seek to minimize the expectation value, or mean cost, of
performing the operation.

This is not the only criterion that could be used. One may
seek instead, for example, to optimize by a minimax crite-
rion: minimizing the maximum cost that might be incurred.
This would lead to a different set of w� from those we will
calculate here. The maximum cost that might be incurred
with such a set would, for certainty, be no higher than the
maximum cost we will arrive at here. However, the expecta-
tion value for the cost, with the different set, would be at
least as high as the expectation value we will find.

To be able to calculate an expectation value, a probability
distribution over the input logical states is needed. For this
we will use the probabilities that go into the calculation of
the Shannon information of the input state: P���. The prob-
ability of the transition �→� occurring is then P�� 
��P���
and the expectation value for the work requirement is

��W� = 	
�

P����E� − TRS�� − 	
�

P����E� − TRS��

+ kTR	
�,�

P��,��lnw�

w�
� , �76�

where P�� ,��= P�� 
��P��� and P���=	�P�� ,��.
For logically reversible transformations, this is fixed:

w�

w�

= P��
�� =
P���
P���

. �77�

For logically irreversible transformations, we must vary the
w� to minimize the function

X = 	
�,�

P��,��lnw�

w�
� . �78�

Consider the similar function

Y = 	
�

P���ln P��� − 	
�

P���ln P���

= 	
�,�

P��,��lnP���
P���

� , �79�

X − Y = 	
�,�

P��,��lnw�P���
P���w�

�
= 	

�,�
P��,��ln� P��,��

P���w��
��� � 0, �80�

where

w��
�� =
P��
��w�

w�

�81�

and the equality occurs if and only if P�� ,��= P���w�� 
��.
As Y is independant of the values of w�, then the minimum
value of X is precisely the value of Y. This minimum value
of X is reached when w�= P���, which leads to w�= P���.

The result can easily be reexpressed as

��W� � 	
�

P����E� − TR�S� − k ln P�����

− 	
�

P����E� − TR�S� − k ln P����� . �82�

This is the minimum expectation value of the work require-
ment for the logical operation, using the physical procedure
we have described. The same expression holds for logically
reversible, irreversible, deterministic, and indeterministic op-
erations. It is not hard to see that this also minimizes the
expectation value of the heat generated:

��Q� � − TR	
�

P����S� − k ln P����

− 	
�

P����S� − k ln P����� . �83�

As was noted for the case of LE in �3�, to achieve the optimal
physical implementation of a logically irreversible operation
requires the physical process to be designed for the particular
probability distribution P��� over the input logical states.11 A
physical implementation optimized for one input probability
distribution will not, in general, be optimized for a different
input probability distribution. For logically irreversible op-
erations it is only possible to thermodynamically optimize
the logical transformation of information �where the input
probability is specified�. Without a probability distribution
�even a default assumption of equiprobable input states� it
does not even make sense to talk about optimizing the ex-
pectation value for the work or heat requirements, or about
the Shannon information of the input and output states.

3. Multiple heat baths

For completeness, we note that, if there are several heat
baths available, at different temperatures, the equations may
be easily generalized. Defining

��Q� = 	
i

��Qi� , �84�

11It is worth noting that this is not the same as having a prior
knowledge of the input logical states. Having prior knowledge of
which input state occurs allows one, trivially, to do rather better
than this, by choosing w�� =0 for all other input states. This opti-
mizes for all individual transitions that come from the known �
input state, but requires a different physical implementation each
time a different input logical state occurs. That different physical
implementation is, in each case, equivalent to a logically reversible
operation.
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T̄ =

	
i

��Qi�

	
i

��Qi�
Ti

, �85�

where ��Qi� is the mean heat generated in a heat bath at

temperature Ti, we may simply replace TR with T̄ and ��Q�
with ��Q�, in Eq. �82�, and all subsequent equations. In ef-
fect, this is equivalent to the possibility of using reversible
Carnot cycles to rearrange heat between any heat baths avail-
able, in addition to performing the logical operation with a
single heat bath.

The introduction of multiple heat baths has little practical
significance though. If

	
�

P����S� − k ln P���� − 	
�

P����S� − k ln P���� 
 0,

�86�

then the least work is required by generating all the heat in
the coolest heat bath available. If

	
�

P����S� − k ln P���� − 	
�

P����S� − k ln P���� � 0

�87�

the opposite is true. The least work involves generating heat
only in the hottest heat bath.

E. Optimum physical process

We have shown that a particular physical process can
implement a logical operation, with a minimum expectation
value for the work required or heat generated. Perhaps other
physical processes might exist that can perform the same
logical operation at a lower cost? We will now prove that no
physical process can implement the same logical transforma-
tion of information at a lower cost.

The initial statistical state of the logical processing appa-
ratus is

�I = 	
�

P�����. �88�

The final statistical state is

�F = 	
�

P�����. �89�

We assume that the environment is initially well described
by a canonical thermal state �E�TR�, at temperature TR, and
that it is uncorrelated with the initial state of the logical
processing system.

Now consider the initial density matrix of the joint system
of the logical processing system and the apparatus

� = �I � �E�TR� , �90�

so

Tr�� ln���� = Tr��I ln��I�� + Tr��E�TR�ln��E�TR��� .

�91�

For any unitary evolution upon the combined system to be a
physical representation of the logical state, it must evolve the
system to some state �� such that the marginal distribution of
the information processing apparatus is

�F = TrE���� . �92�

The marginal distribution of the environment is then

�E� = TrF���� . �93�

From the well-known �14,19,20� properties of unitary evolu-
tions and density matrices,

Tr�� ln���� = Tr��� ln����� , �94�

Tr��� ln����� � Tr��F ln��F�� + Tr��E� ln��E��� . �95�

As �E�TR� is a canonical distribution,

HE

kTR
= − ln��E�TR�� − ln Z , �96�

so

Tr��E�ln��E�� +
HE

kTR
�� − Tr��E�TR�ln��E�TR�� +

HE

kTR
��

= Tr„�E��ln��E�� − ln��E�TR���… � 0, �97�

where HE is the internal Hamiltonian of the environment. A
simple rearrangement gives

Tr��I ln��I�� − Tr��F ln��F�� �
Tr�HE�E�TR��

kTR
−

Tr�HE�E��
kTR

.

�98�

As the physical representations of the logical states are non-
overlapping,

− kTr��I ln��I�� = 	
�

P����S� − k ln P���� , �99�

− kTr��F ln��F�� = 	
�

P����S� − k ln P���� . �100�

The expectation value for the work performed upon the
system must equal12 the expectation value for the change in
the internal energy of the system plus the expectation value
for the change in the internal energy of the environment:

��W� = 	
�

P���E� + Tr�HE�E��

− 	
�

P���E� − Tr�HE�E�TR�� . �101�

12We assume that the interaction energy between system and en-
vironment is negligible at the start and end of the operation. Both
this assumption and the assumption that the environment is initially
an uncorrelated Gibbs state do not appear to hold in �21,22�.
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From this we conclude that, for any physical process that
takes input logical states ��� with probabilities P��� and pro-
duces output logical states ��� with probabilities P��� then
the expectation value of the work requirement for this pro-
cess cannot be less than

��W� � 	
�

P����E� − TR�S� − k ln P�����

− 	
�

P����E� − TR�S� − k ln P����� . �102�

There is no physical process that can do better, in terms of an
expectation value for the work requirement, or for the heat
generation, than the process developed in Sec. III B.

We emphasize that the relationships we have derived in
this section do not depend upon the results of the specific
process we examined in the previous section. No assump-
tions are made regarding the details of the physical process
that represents the logical operation, beyond the require-
ments that it is a unitary evolution of the combined state
space of system and environment and does, in fact, faithfully
represent the operation. No assumptions are required about
the physical representation of the input and output logical
states, except those made in Sec. II D. It is not assumed that
the environment is an ideal heat bath, is in some thermody-
namic limit, or is in thermal equilibrium after the operation.
The results require only that the environment be a canoni-
cally distributed and uncorrelated system at the start of the
operation. Given these assumptions, the result follows: there
is no physical representation of the logical operation that has
a lower expectation value for the work requirements or heat
generation.

IV. GENERALIZED LANDAUER PRINCIPLE

There are several different, but formally equivalent, ways
of expressing the generalized Landauer principle �GLP�. It
will be convenient to use the notation

��E� = 	
�

P���E� − 	
�

P���E�,

�S = 	
�

P����S� − k ln P���� − 	
�

P����S� − k ln P���� ,

�H = − 	
�

P���log2 P��� + 	
�

P���log2 P��� �103�

for: the change in the expectation value for the internal en-
ergy of the information processing apparatus; the change in
the Gibbs–von Neumann entropy of the statistical ensemble
describing the information processing system; and the
change in the Shannon information of the logical states over
the course of the operation.

A. Work requirements

GLP1: Work. A logical transformation of information has
a minimal expectation value for the work requirement given
by

��W� � ��E� − TR�S . �104�

B. Heat generation

We note that

��Q� = ��W� − ��E� �105�

is equal to the expectation value of the heat generated in the
heat bath.

GLP2: Heat. A logical transformation of information has
a minimal expectation value for the heat generated in the
environment of

��Q� � − TR�S . �106�

It is important to remember that the term �S appearing in
GLP1 and GLP2 is not the change in Shannon information
�H between the input and output states. It is the change in
the Gibbs–von Neumann entropy of the logical system, tak-
ing into account any changes in the entropies of the suben-
sembles that represent the input and output logical states. It
can be related to the change in the Shannon information by

�S = 	
�

P���S� − 	
�

P���S� + k�H ln 2. �107�

C. Entropic cost

The change in the Gibbs–von Neumann entropy of the
environmental heat bath is given by

�SHB = − k Tr��E� ln��E��� + kTr��E�TR�ln��E�TR��� ,

�108�

which gives the entropic form of the generalized Landauer
principle.

GLP3: Entropy. A logical transformation of information
requires a minimal change in the Gibbs–von Neumann en-
tropies of the marginal statistical states of an information
processing apparatus �S and its environment �SHB of

�SHB + �S � 0. �109�

This is a trivial consequence of the requirements that the
evolution be unitary and that the statistical states of the logi-
cal processing system and the environment be initially un-
correlated. The expectation value of the heat generated in the
environment is at least equal to the increase in the Gibbs–
von Neumann entropy of the marginal state of the heat bath:

��Q� � TR�SHB. �110�

This allows us to deduce GLP1 or GLP2 from GLP3, but not
the reverse.13

D. Information

If we define the term

13In the limiting case of an ideal heat bath and quasistatic pro-
cesses, the equality is reached and the deduction can then go in both
directions.
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�SL = 	
�

P���S� − 	
�

P���S�, �111�

we get

�SHB + �SL � − k�H ln 2. �112�

This expression seems suggestive. If we regard the terms
�SHB and �SL as changes in the entropies of the non-
information-bearing degrees of freedom of the environment
and the apparatus, respectively, then we appear to have pro-
vided a quantitative version of Bennet’s statement that “any
logically irreversible manipulation of information ��H�. . .
must be accompanied by a corresponding �k ln 2� entropy
increase in the non-information-bearing degrees of freedom
of the information processing apparatus ��SL� or its environ-
ment ��SHB�” �1� although, unlike Bennett, we do not restrict
this to irreversible transformations of data.

This produces what may be taken as the information form
of the GLP.

GLP4: Information. A logical transformation of informa-
tion requires an increase of entropy of the non-information-
bearing degrees of freedom of the information processing
apparatus and its environment of at least −k ln 2 times the
change in the total quantity of Shannon information over the
course of the operation:

�SNIBDF � − k�H ln 2, �113�

where �SNIBDF=�SHB+�SL. This is quite generally true and
follows directly from GLP3 and the definition of �SL.

V. MODELS OF COMPUTING

We will now discuss some of the consequences that can
be drawn from the generalized Landauer principle by vary-
ing the thermodynamic properties of the input and output
states. This allows us to consider the effects of having dif-
ferent energies and entropies for the physical states that em-
body the logical states and has some surprising conse-
quences.

A. Uniform computing

Assumption 1. When we make the assumption that the
computation takes place at the same temperature throughout,
such that

∀ �,� TR = T� = T�, �114�

then we shall call this isothermal computing.
In the most commonly encountered set of assumptions for

the thermodynamics of computation, we have, in addition to
the assumption of isothermal computing, the assumption of
uniform states.

Assumption 2. The physical states that represent the logi-
cal states all have the same entropy and mean energy, so that

∀ �,� ER = E� = E�,

∀ �,� SR = S� = S�. �115�

This reduces the generalized Landauer principle to the form
of

��W� � − kTR�H ln 2,

��Q� � − kTR�H ln 2, �116�

where �H is the change in Shannon information over the
course of the transformation. This is the usual form in which
Landauer’s principle is encountered.

The necessary and sufficient conditions for Eqs. �116� to
hold is a weaker condition

Assumption 3. Uniform computing:

	
�

P���E� = 	
�

P���E�,

	
�

P���S� = 	
�

P���S�. �117�

B. Equilibrium computing

The simplifying assumption of uniform computing is
made so universally that it might be questioned whether
there is any value to considering nonuniform computing. To
answer this, consider the following assumption.

Assumption 4. In equilibrium computing, the input and
output states are constructed to be canonical thermal sys-
tems, at temperature TR, with the properties

E� − TRS� + kTR ln P��� = CA,

E� − TRS� + kTR ln P��� = CA, �118�

where CA is a constant related to the overall size of the
logical processing apparatus. This yields the relationships

��E� − TR�S = 0, �119�

and reduces the generalized Landauer principle to

��W� � 0, �120�

although

��Q� � − TR�S �121�

still. The equality can, of course, only be reached in the limit
of slow processes.

Assumption 5. The necessary and sufficient assumption
for Eq. �120� to hold is that of zero mean work,

	
�

P����E� − TR�S� + k ln P�����

= 	
�

P����E� − TR�S� + k ln P����� �122�

Assumption 5 implies only that the average work require-
ment can approach zero, over all the possible transitions be-
tween logical states. Assumption 4 ensures that there is a
zero mean work requirement �W�,� for all individual �� ,��
transitions.

C. Adiabatic computing

Assumption 6. To eliminate mean heat generation in the
ideal limit, the necessary and sufficient condition is that of
zero mean heat generation,
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�

P����S� + k ln P���� = 	
�

P����S� + k ln P���� ,

�123�

leading to

��Q� � 0, �124�

although this does not eliminate mean work requirements

��W� = ��E� . �125�

Again, this is only the expectation value over all transitions.
To ensure that the mean heat generated �Q�,� is zero for
each individual �� ,�� transition, requires a further assump-
tion

Assumption 7. Adiabatic computing is represented by

S� + k ln P��� = CB,

S� + k ln P��� = CB, �126�

where CB is an apparatus-related constant.

D. Adiabatic equilibrium computing

Assumption 8. Combining the assumptions of adiabatic
and equilibrium computing gives the requirement of adia-
batic equilibrium computing,

E� = E� = ER,

S� + k ln P��� = CC,

S� + k ln P��� = CC, �127�

which yields, ∀ � ,�

�W�,� � 0,

�Q�,� � 0, �128�

with equality being reachable as a limiting case, and CC
again a machine-dependent constant.

This result may seem surprising. It suggests that it is pos-
sible to design a computer to perform any combination of
logical operations, with no exchange of heat with the envi-
ronment and requires no work to be performed upon it. This
must be as true for logically irreversible operations as for
logically reversible operations, and as true for logically in-
deterministic operations as for logically deterministic opera-
tions.

To understand this better, let us consider what happens in
adiabatic equilibrium computing. We can use the square well
potential as the physical model of the logical states, as the
internal energy of these states is 1

2kT. Varying the width of
the square well potential for each input and output logical
state satisfies the remaining conditions.

Implementing the model of adiabatic equilibrium comput-
ing on the processes of Sec. III simplifies the procedure sig-
nificantly.

�1� There is no need to resize the input states, as these will
already be canonically distributed. Steps 1–3 are redundant.

�2� Potential barriers are inserted into the � states, cor-
responding to the conditional probabilities P�� 
��, as in
step 4.

�3� The separate portions of the � output states are
brought into adjacent positions as in step 5.

�4� The potential barriers within each � output state are
removed, as in step 6.

�5� These output states are already canonically distrib-
uted. There is therefore no need for a resizing of the output
states and steps 7–9 are unnecessary.

None of these stages requires any work to be performed
upon the system or exchange of heat with the environment.
The computation is reduced to a process of rearranging a
canonical ensemble from one set of canonically distributed
orthogonal subensembles into a different set of canonically
distributed orthogonal subensembles, in accordance with the
computational probabilities P�� 
��.

As the probabilities of the different output states cannot
change between logical operations14 then the canonically dis-
tributed output states can be used as canonically distributed
input states to any new logical operation. This thermody-
namic model may therefore proceed indefinitely without gen-
erating any heat or requiring any work.

Before leaving this subject, let us just note one feature of
equilibrium computing. Logically deterministic, irreversible
computations are able to avoid generating heat, in this
model, by increasing the size of the physical states represent-
ing the logical states. This does not mean that the logical
processing apparatus itself needs to be increasing in size.
Although the size of the individual states has increased, the
number of logical states has decreased �by the definition of a
logically deterministic, irreversible computation!�. Whenever
the equality in assumption 6 holds, the two effects cancel out
and the overall size of the logical processing apparatus can
remain constant.

VI. THERMODYNAMIC REVERSIBILITY

We have not yet examined the question of whether these
operations are thermodynamically reversible. This is a subtle
question and depends upon what one takes to be the statisti-
cal mechanical generalization of thermodynamic entropy and
thermodynamic reversibility. We will first discuss how this
appears from the perspective of three different approaches to
entropy, and then from a definition based on thermodynamic
cycles that is not directly based upon any definition of en-
tropy.

It is worth remembering that a net increase in entropy is
considered to be taken as a sign of irreversibility because net
decreases in entropy cannot occur �or are unlikely�. An “en-
tropy” that can be systematically decreased may be a useful
indicator of some properties, but its increase cannot auto-
matically be regarded as an indicator of irreversibility,
whether thermodynamic or of some other kind.

We will consider three possible conditions for thermody-
namic reversibility and irreversibility.

14By definition anything that changes the probabilities of a state
must be a logical transformation of the data.
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�1� The thermodynamic entropy is the entropy of the in-
dividual state. If the system is in logical state �, then the
thermodynamic entropy is S�. The net entropy change for a
particular logical transition, from logical state � to logical
state � is

S� − S� +
�Q�,�

TR
. �129�

A transition is thermodynamically reversible if the decrease
in individual state entropy from the input to output logical
states is equal to the heat generated in the heat bath, divided
by the temperature of the heat bath. A transition is thermo-
dynamically irreversible if the decrease in individual state
entropy is less than this. Decreases in individual state en-
tropy greater than this cannot occur.

�2� The thermodynamic entropy is the entropy of the in-
dividual state, but is only nondecreasing on average. If the
system is in logical state �, then the thermodynamic entropy
is S�, but this may decrease provided it does not decrease on
average. The average change is

	
�

P���S� − 	
�

P���S� +
��Q�,��

TR
. �130�

A logical transformation of information is thermodynami-
cally reversible if the average decrease in individual state
entropy over all the transitions from input to output logical
states is equal to the average heat generated in the heat bath,
divided by the temperature of the heat bath. The transforma-
tion is thermodynamically irreversible if the average de-
crease in individual state entropy is less than this. Average
decreases in individual state entropy greater than this cannot
occur.

�3� The thermodynamic entropy is the Gibbs–von Neu-
mann entropy of the marginal statistical states. If the statis-
tical state of the system is �=	�P�����, the thermodynamic
entropy is −k Tr�� ln����. A logical transformation of infor-
mation is thermodynamically reversible if the decrease in
Gibbs–von Neumann entropy from the input to output statis-
tical states is equal to the average heat generated in the heat
bath, divided by the temperature of the heat bath. The trans-
formation is thermodynamically irreversible if the decrease
in Gibbs–von Neumann entropy is less than this. Decreases
in Gibbs–von Neumann entropy greater than this cannot oc-
cur.

The first two conditions imply thermodynamic irrevers-
ibility for logically deterministic, irreversible operations. Un-
fortunately, it will be shown that neither condition can con-
sistently account for logically indeterministic operations,
which can systematically decrease the relevant entropy mea-
sure by quantities greater than should be permitted.

The third condition gives an entropy that is consistently
nondecreasing �provided there are no spontaneous or preex-
isting correlations with heat baths�. Logically indeterministic
operations do not decrease this entropy. On the other hand,
logically irreversible operations no longer necessarily in-
crease this entropy measure either. According to the Gibbs–
von Neumann measure, all logical operations may be imple-
mented in a thermodynamically reversible manner.

We will be making the standard assumptions that all pro-
cesses can take place with ideal heat baths and sufficiently
slowly that equalities are reached as the limiting cases. With-
out these assumptions no process can be thermodynamically
reversible. We will therefore replace the appropriate in-
equalities with equalities.

A. Individual logical state entropy

The net individual state entropy change, for a particular
logical transition, gives

S� − S� +
�Q�,�

TR
� k ln�P��
��� . �131�

Allowed logically deterministic transitions require P�� 
��
=1. The equality is automatically reached for logically deter-
ministic, reversible transitions, and which are therefore ther-
modynamically reversible. For logically deterministic, irre-
versible transitions, the equality requires w�=1. This is
possible only if no other input logical states are allowed.
Such an operation would be trivially logically reversible as
there is only one permissible input logical state. So, accord-
ing to this entropy measure, logically deterministic irrevers-
ible transitions must be thermodynamically irreversible.

As ln�P�� 
����0 it is possible that

S� − S� +
�Q�,�

TR

 0. �132�

This gives a net decrease in individual state entropy. For this
to happen, the transition must be logically indeterministic.
Optimally implemented, logically indeterministic, reversible
transitions will always decrease individual state entropy.

If an entropy increase is indicative of thermodynamic ir-
reversibility because entropy decreases are impossible, this
measure of entropy cannot be seen as a good indicator of
thermodynamic irreversibility. Any apparent irreversibility
can actually be reversed.

B. Average state entropy

In statistical mechanics fluctuations occur. Perhaps the de-
mand for a strictly nondecreasing entropy might be the prob-
lem. What of the average change in entropy? Does this give
a good indicator of thermodynamic irreversibility?

This gives

	
�

P���S� − 	
�

P���S� +
��Q�,��

TR
= − k�H ln 2.

�133�

What we have here is the ideal limit case of GLP4, with
�SNIBDF now representing the average change in entropy:

�SNIBDF = 	
�

P���S� − 	
�

P���S� +
��Q�,��

TR
. �134�

Logically deterministic, irreversible operations have �H

0, so
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�SNIBDF � 0, �135�

and the net mean change in individual state entropy of the
system and environment is strictly increasing. Again, logi-
cally deterministic, irreversible operations must be, on aver-
age, individual state entropy increasing.

The problem with the argument should be immediately
apparent: for logically reversible, indeterministic operations
�H�0 and by the same reasoning and arguments it is pos-
sible that

�SNIBDF = − k�H ln 2 
 0. �136�

Not only can logically indeterministic operations reduce in-
dividual state entropy on individual transitions, they can
even reduce this entropy on average.

C. Gibbs–von Neumann entropy

The entropy measure which includes the effects of the
statistical mixture over the states, the Gibbs–von Neumann
entropy over the ensemble, gives the initial entropy of the
logical processing system,

SI = − k Tr��I ln��I�� , �137�

where

�I = 	
�

P�����, �138�

and the final entropy

SF = − k Tr��F ln��F�� , �139�

where

�F = 	
�

P�����. �140�

In �13� it is argued that the Gibbs–von Neumann entropy is
indeed the correct statistical mechanical generalization of
thermodynamic entropy, although this identification has not
been assumed anywhere within this paper.15

When we consider the Gibbs–von Neumann entropy, the
most appropriate form of the GLP is GLP3. In this case, the
limiting behavior gives

�SHB + �S = 0. �141�

As any logical operation may reach this limit, the Gibbs–von
Neumann entropy regards all logical operations as being pos-
sible in a thermodynamically reversible manner.

D. Discussion

As some of these results may seem surprising or counter-
intuitive, and appear to contradict widely stated expressions

of the implications of the thermodynamics of logically irre-
versible operations, let us examine them in more detail.

1. The RLE-LE cycle

First, let us take the examples of the logically determin-
istic, irreversible, reset to zero �RTZ� operation and the logi-
cally reversible, indeterministic unset from zero �UFZ� opera-
tion �see the Appendix�. If the argument is accepted that the
optimal procedure to implement RTZ is entropy increasing,
then it must also be accepted that the optimal procedure for
UFZ can be entropy decreasing.

That this must be the case can be seen by considering the
reverse Landauer erasure �RLE� operation immediately fol-
lowed by the Landauer erasure �LE� operation. If these two
procedures are matched in terms of the probabilities and in-
put and output states, then the result is to leave both the
logical system and the environment in their initial states. The
total entropy must be the same at the end of such a proce-
dure, as at the start, and it follows if it increases during LE,
then it must decrease during RLE.

As a simple example, using the assumptions of uniform
computing, and an initial input state of 0, the process of RLE

extracts kT ln 2 heat from the environment, and converts it
into work. The output state of RLE is an equiprobable distri-
bution of logical states 0 and 1, each of which has the same
entropy as the initial 0 state.

This is input to the LE procedure, which requires kT ln 2
heat to be generated in the environment and leaves the output
state as 0. The system and environment are left in the same
logical and thermodynamic states as at the beginning of the
process. There is a zero net work requirement and a zero net
heat generation. The combination of RLE followed by LE is
clearly a thermodynamically reversible cycle.

It follows that the net change in entropy over the course
of the two operations must be zero for both system and en-
vironment. To argue that the net change in entropy for the LE

procedure is k ln 2, requires, for the overall change in en-
tropy to be zero, the change in entropy during the RLE op-
eration to be −k ln 2.

Both the individual state entropies and the average state
entropy do indeed decrease by k ln 2 during the RLE opera-
tion. The Gibbs–von Neumann entropy remains constant, as
the mixing entropy increases by k ln 2 to compensate. During
the course of the LE operation, the individual state and aver-
age state entropies increase by k ln 2. In the conventional
operation of the LE process, this is associated with heat gen-
erated in the environment, and is often considered to be the
source of an irreversible entropy increase. However, we can
clearly see that from the point of view of the Gibbs–von
Neumann entropy, there is a compensating reduction of
k ln 2 associated with the reduction in the mixing entropy.

2. Uniform computing

We can easily generalize this to situations where the quan-
tity of information erased is less than 1 bit,16 and in doing so
will see more clearly the need to optimize the operation to

15We have calculated the Gibbs–von Neumann entropies for indi-
vidual states, in canonical distributions, but even here the calcula-
tion of the mean work requirements and mean heat generated did
not depend upon any identification of this as a thermodynamic
entropy. 16This cycle was detailed in �3�.
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the probability distribution. We simply need to implement an
UFZ�p� operation, followed by a RTZ�p� operation.

We start with a standard atom in a box, and the partition
divides the box exactly in half. The atom is on the left-hand
side �which represents logical state 0� with certainty.

a. RLE�p�. The RLE�p� operation consists of the following
steps.

�1� Isothermally move the partition to the right hand side,
extracting W1=kT ln 2 heat as work.

�2� Insert the partition at location x= pL in the box, where
the width of the box is L. The atom is, with probability p, on
the left-hand side of the partition.

�3� Isothermally move the partition to the center of the
box �x= 1

2L�. If the atom is on the left-hand side, the work
requirement is kT ln�2p� while if it is on the right, the work
requirement is kT ln�2�1− p��. The mean work required in
this stage is

W2 = kT�p ln p + �1 − p�ln�1 − p� + ln 2� �142�

so the net work for the operation is

W1 + W2 = kT�p ln p + �1 − p�ln�1 − p�� , �143�

which is negative, representing a net extraction of
work.

Now, we find that the individual state entropy and average
state entropy remain the same as at the start of the operation,
despite the fact that kT�p ln p+ �1− p�ln�1− p�� work has
been extracted from the heat bath. From the point of view of
the Gibbs–von Neumann entropy, this is compensated by the
increase in mixing entropy between the two logical states.

b. LE�p�. If we follow this with an LE�p� operation, we
have the following steps.

�1� Isothermally move the partition to the position x= pL.
If the atom is on the left-hand side, the work requirement is
−kT ln�2p� while if it is on the right, the work requirement is
−kT ln�2�1− p��. The mean work required in this stage is

W3 = − kT�p ln p + �1 − p�ln�1 − p� + ln 2� . �144�

�2� Remove the partition from the box.
�3� Insert the partition in the right-hand side of the box

and isothermally move it to the center. This requires W4

=kT ln 2 work, so the net work is

W3 + W4 = − kT�p ln p + �1 − p�ln�1 − p�� . �145�

Again, both the individual and average state entropy are un-
changed, while work is converted to heat in the environment.
The Gibbs–von Neumann entropy, however, shows a com-
pensating decrease in mixing entropy.

The net work and net heat generated, over the course of
the cycle, is zero:

W1 + W2 + W3 + W4 = 0. �146�

If the heat generated in the environment during the LE�p�
operation is an indicator of an irreversible entropy increase,

we have to explain a corresponding systematic reduction in
entropy during the RLE�p� operation. As we noted, entropy
increases are associated with irreversibility precisely because
corresponding systematic entropy decreases are supposed to
be impossible.

c. LE�p��. Let us now consider following the RLE�p� op-
eration with LE�p��, where the erasure operation has been
optimized for a different probability distribution.

�1� Isothermally move the partition to the position x
= p�L. If the atom is on the left-hand side, the work require-
ment is −kT ln�2p��, while if it is on the right, the work
requirement is −kT ln�2�1− p���. The mean work required in
this stage is

W5 = − kT�p ln p� + �1 − p�ln�1 − p�� + ln 2� . �147�

�2� Remove the partition from the box.
�3� Insert the partition in the right-hand side of the box

and isothermally move it to the center. This requires W6

=kT ln 2 work, so the net work is

W5 + W6 = − kT�p ln p� + �1 − p�ln�1 − p��� . �148�

The net work required over the RLE�p�−LE�p�� cycle is

W1 + W2 + W5 + W6 = kT�p ln p

p�
� + �1 − p�ln 1 − p

1 − p�
��

� 0, �149�

with equality occurring if, and only if, p= p�.
Once again, both the individual and average state entropy

are unchanged. In this case, however, the cycle generates a
net heat in the environment, unless p= p�. This cycle is, in
general, thermodynamically irreversible.

From the point of view of the Gibbs–von Neumann en-
tropy, it is the removal of the partition from the location x
= p�L, when the probability is p, that is associated with an
uncompensated entropy increase. We can see this by noting
that, if we reinsert the partition at x= p�L, we do not recover
the previous statistical state, as the probability of the atom
being on the left-hand side would then be p�. To recover the
statistical state we need to reinsert the partition at x= pL and
then move it isothermally to x= p�L. This isothermal move-
ment of the partition requires, on average,

kT�p ln p

p�
� + �1 − p�ln 1 − p

1 − p�
�� � 0

work to be performed.
Even so, let us note that had LE�p�� in fact followed the

RLE�p�� operation, it would have been thermodynamically
reversible. The physical process involved in performing the
LE�p� �or LE�p��� operation cannot be said to be intrinsically
thermodynamically reversible �or irreversible� in itself.
Whether it is thermodynamically reversible or not depends
upon the statistical state upon which it acts.

GENERALIZING LANDAUER’S PRINCIPLE PHYSICAL REVIEW E 79, 031105 �2009�

031105-19



3. Adiabatic equilibrium computing

Let us look at the same logical cycle, but with a different
computing model: adiabatic equilibrium. Again we start with
a standard atom in a box. As the atom is in logical state 0
with certainty, the conditions of Eq. �127� require that logical
state 0 occupies the entire box.

a. RLE�p�. The RLE�p� operation now consists of a single
step:

�1� Insert the partition at location x= pL in the box, where
the width of the box is L. The atom is, with probability p, on
the left-hand side of the partition.

No work is required or heat generated. The individual and
average state entropies have decreased, with the average
state entropy decreasing by k�p ln p+ �1− p�ln�1− p��. The
Gibbs–von Neumann entropy remains the same, as the mix-
ing entropy compensates for this.

b. LE�p�. If we follow this with an LE�p� operation, we
have the following step.

�1� Remove the partition from the box.
Both the individual and average state entropies are in-

creased, with the average state entropy increasing by
k�p ln p+ �1− p�ln�1− p��. The Gibbs–von Neumann entropy,
however, shows a compensating decrease in mixing
entropy.

We see how, in the case of adiabatic equilibrium comput-
ing, the generation of heat in the environment is replaced by
changes in the entropies of the individual states �or, as �1�
refers to it, the non-information-bearing degrees of freedom
of the apparatus�. Although there is an increase in such en-
tropies during the LE�p� process, there is an exactly equiva-
lent decrease during the RLE�p� process. Again, if we take the
increase during LE�p� to be indicative of a thermodynamic
irreversibility, we are left with the challenge of accounting
for the systematic decrease during the RLE�p� operation.

c. LE�p��. Following RLE�p� with an LE�p�� operation un-
der the assumptions of adiabatic equilibrium does not en-
tirely make sense, as adiabatic equilibrium requires the
physical representation of the logical states to be tailored to
the probability of the state occurring. However, we may con-
sider the optimum implementation of RTZ�p��, on the as-
sumption that the probability of the logical state 0 is p�, with
the partition initially located at x= pL and the process leaving
the system in a state compatible with adiabatic equilibrium
computation.

�1� Isothermally move the partition to the position x
= p�L. If the atom is on the left-hand side, the work require-
ment is −kT ln�p� / p� while if it is on the right, the work
requirement is −kT ln��1− p�� / �1− p��. The mean work
required17 in this stage is

kT�p ln p

p�
� + �1 − p�ln 1 − p

1 − p�
�� � 0 �151�

with equality occurring if, and only if, p= p�.
�2� Remove the partition from the box.
The net work required over the RLE�p�−LE�p�� cycle is

again

kT�p ln p

p�
� + �1 − p�ln 1 − p

1 − p�
�� � 0. �152�

Once again, from the point of view of the Gibbs–von Neu-
mann entropy, it is the removal of the partition from the
location x= p�L, when the probability is p, that is associated
with an uncompensated entropy increase.

4. Generic logical operations

Now let us consider a generic logical transformation of
information. Start with input logical states �, physically rep-
resented by states with energies and entropies E� and S�, and
define a logical operation by the transition probabilities
P�� 
�� to the output logical states � with physical state
energies and entropies E� and S�.

To thermodynamically optimize the physical process, we
need a probability distribution P���. The � output states will
then occur with probabilities

P��� = 	
�

P��
��P��� . �153�

Writing

�I = 	
�

P�����,

�F = 	
�

P�����,

then the optimal thermodynamic cost of this is

��W� = �Tr�H�I� − TRS��I�� − �Tr�H�F� − TRS��F��

= 	
�

P����E� − TRS�� − 	
�

P����E� − TRS��

+ kTR	
�,�

P��,��lnP���
P���

� ,

��Q� = − TRS��I� + TRS��F� . �154�

We can now define a physical process that acts upon the
physical states ���, and evolves them into the physical states
���, with probabilities18 given by

17Note that, had the probability of logical state 0 actually been p�,
the work required would have been

kT�p� ln p

p�
� + �1 − p��ln 1 − p

1 − p�
�� � 0, �150�

so work would have been extracted in the process.

18For logical operations taking as input states ��� and producing
output states ���, we will use the notation � for the corresponding
probabilities.

O. J. E. MARONEY PHYSICAL REVIEW E 79, 031105 �2009�

031105-20



���
�� =
P��
��P���

	
�

P��
��P���
. �155�

It is straightforward to see that if this acts upon states ���,
occurring with probabilities P���, then it produces the states
��� with probabilities P���. If the physical process is opti-
mized for these probabilities, then the thermodynamic cost is

��W�� = − ��W� ,

��Q�� = − ��Q� . �156�

So for any logical transformation of information, optimally
implemented, there exists a second operation, which when
optimally implemented restores the original statistical state,
and for which the total expectation value of the work re-
quirement and the total expectation value of the energy gen-
erated in the environment are zero. This is true regardless of
whether the original operation is logical reversible, irrevers-
ible, deterministic, or indeterministic.

As we have noted before, however, to achieve this opti-
mum for logically irreversible operations, the physical pro-
cess must take into account the probability distribution P���
over the input logical states. One cannot create a physical
process that implements a logically irreversible operation
which will be thermodynamically optimal for every probabil-
ity distribution over the input logical states. This differs from
logically reversible operations, which may be represented by
a physical process that is thermodynamically optimal for any
probability distribution over the input logical states.

We will now look at the effect of an operation that is not
optimized for the right set of probabilities. Suppose we have
an operation with the same transition probabilities ��� 
��
above, but where the physical process has been optimized for
the input probability distribution ����. The output states are
expected to occur with probabilities

���� = 	
�

���
������ �157�

and the expected thermodynamic cost, from Eq. �76�, is

��W�� = 	
�

�����E� − TRS�� − 	
�

�����E� − TRS��

+ kTR	
�,�

���,��lnw�

w�
� �158�

with w�=����, w�=����, and ��� ,��=��� 
������.
The input states do not occur with ���� but with P���.

The actual thermodynamic cost incurred is

��W�� � = 	
�

P����E� − TRS�� − 	
�

P����E� − TRS��

+ kTR	
�,�

P��,��lnw�

w�
� . �159�

The combined cycle now has a cost

��W�� � + ��W� = kTR	
�,�

P��,��lnw�P���
w�P���

� , �160�

which can be rearranged to give

��W�� � + ��W� = kTR	
�,�

P��,��ln P��,��
���
��P���� � 0,

�161�

where ��� 
������=��� 
������.
Equality can occur in two ways. First, and most simply, if

����= P���. The input states to the ��� 
�� operation occur
with the optimal probabilities.

Second, if the second operation is a logically reversible
operation, then

∀ � ����
�� � 0 ⇒ ∀ �� � �����
�� = 0� .

�162�

As ��� 
��= P�� 
��, it follows that the first operation must
have been logically deterministic:

∀ � �P��
�� � 0 ⇒ ∀ �� � �P���
�� = 0� . �163�

Together this means that

P��
�� =
P���
P���

= ���
�� =
w�

w�

�164�

and ��W�� �+ ��W�=0, regardless of the value of w�. This
shows, once more, that logically reversible operations may
be thermodynamically optimized without reference to the
probability distribution over their input states.

A corollary to this is worth noting. While the second logi-
cal operation, if logically reversible, may be implemented
and optimized without reference to the probability distribu-
tion over the input states, its very definition depends upon
the probability distribution over the input states of the first
operation. The first operation is defined by the set of transi-
tion probabilities �P�� 
���, while the second is defined by

���
�� = P��
�� =
P��
��P���

	
�

P��
��P���
. �165�

There is, in general, only one way to make this independent
of �P����: if the first operation is logically reversible, then
P�� 
��� �0,1�. The second operation is now logically de-
terministic and ��� 
��� �0,1� does not require the �P����.

We can summarize this, as follows. If an operation
�P�� 
��� is logically reversible, then it is possible to calcu-
late a �logically deterministic� reverse operation ���� 
���,
independently of the first input probability distribution
�P����. However, if �P�� 
��� is logically indeterministic,
then optimizing the reverse operation requires the output
probability distribution �P����.

Conversely, if an operation �P�� 
��� is logically deter-
ministic, then it is possible to thermodynamically optimize a
�logically reversible� reverse operation ���� 
���, indepen-
dently of the first output probability distribution �P����.
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However, if �P�� 
��� is logically irreversible, then the very
calculation of the probabilities ���� 
��� require the first in-
put probability distribution �P����.

In general, it is only for logically deterministic, reversible
operations �which are permutations� that one can construct
optimal reverse operations independently of the probability
distributions.

E. Thermodynamic irreversibility

The reverse operations considered in the preceding dis-
cussion have the property of restoring the original statistical
state of the logical system. They do not, in general, restore
the original logical state. The question of what is the “cor-
rect” thermodynamic entropy to use in such situations is not
uncontroversial and can depend upon differing physical in-
terpretations of the probabilities of the initial and final logi-
cal states. It will therefore be helpful to consider an approach
to thermodynamic reversibility that does not depend upon
such definitions.

We will use this to discuss further that the thermodynamic
optimization of logically irreversible operations is not pos-
sible without specifying the probability distribution over the
input states. Then we consider two additional sources of ther-
modynamic irreversibility that occur in the practical con-
struction of information processing systems.

1. Thermodynamic cycles

In phenomenological thermodynamics, in any closed
cycle, where a system returns to its initial state, the total heat
generated in heat baths in the process must satisfy

	
i

Qi

Ti
� 0. �166�

As is well known, in statistical mechanics this can no longer
be relied upon. There is some probability for the equality
being violated. However, provided the system does return to
its initial macroscopic state with certainty, then

	
i

�Qi�
Ti

� 0 �167�

still holds. We will regard such a cycle, for which the equal-
ity holds, to be a thermodynamically reversible cycle, and
use the following definition19 of a thermodynamically revers-
ible process: If a given physical process can, in principle, be
included in at least one thermodynamically reversible cycle,
then it is a thermodynamically reversible process.

To say otherwise would require one either to say that the
overall cycle is thermodynamically reversible, although one
of the steps in the cycle is not �which challenges what it
could possibly mean to refer to that step as thermodynami-
cally irreversible� or to say that the overall cycle is thermo-

dynamically irreversible, despite the fact that it restores the
original state with certainty and generates no net heat in any
heat bath �and which means that the entropy of the universe
must be the same at the end as the start of the cycle�.

Conversely, if a given physical process cannot, even in
principle, be included in any thermodynamically reversible
cycles, then it is a thermodynamically irreversible process.

To avoid interpretational problems over probability, we
will require that the thermodynamically reversible cycle
starts, and ends, with the system in a physical state that rep-
resents a fixed logical state a, with certainty.

2. Optimal implementations

Take any logical operation, defined by the set �P�� 
���,
and construct a physical implementation of that operation,
optimized for the values w� and w�=	�P�� 
��w�. This
physical process will implement the �P�� 
��� operation re-
gardless of the input state probabilities.

We now also construct two further operations: a logically
reversible, indeterministic operation, generalizing the UFZ

operation, that acts on a as the sole possible logical input
state, and outputs state � with probability P���=w�; and a
logically irreversible, deterministic operation, generalizing
RTZ, that acts on the logical states ���, and always outputs
logical state a. The physical implementation of this second
operation is optimized for probabilities P���=w�. Both these
are well-defined physical processes.

It is clear that the sequence of these three operations
forms a closed cycle, starting and ending in logical state a,
with certainty. It is trivial to show that the optimal imple-
mentation of these operations produces a net thermodynamic
cost of zero, over the course of the cycle. The cycle is, un-
questionably, a thermodynamically reversible cycle. The
given physical process that implements the logical operation
must, then, be regarded as a thermodynamically reversible
process.

3. Suboptimal implementations

If we had used a different initial operation, generating the
logical state � with probability P����, and a final operation
optimized for probabilities P����=	�P�� 
��P����, then it is
straightforward to show that the cost would be

W = kT	
�,�

P���,��lnP����w�

P����w�
� � 0. �168�

Equality is in general reachable if either w�= P���� or ∀� ,�,
P�� 
��w�� �0,w��, the latter being possible only if the logi-
cal operation �P�� 
��� is logically reversible.

This leaves us with the following conclusions.
�1� For any logical operation �P�� 
���, there exist physi-

cal implementations of that operation which can be included
in thermodynamically reversible cycles.

�2� For any logical operation �P�� 
���, and for any given
probability distribution P��� over the input logical states,
there exist physical implementations of that operation which
can be included in thermodynamically reversible cycles.

�3� A given physical implementation of logical operation
�P�� 
��� cannot be included in thermodynamically revers-

19We define the condition in this way to take into account the fact
that for any physical process, it is always trivially possible to find
some closed cycle incorporating that process for which inequality is
strictly positive.
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ible cycles for generic probability distributions over the input
states unless it is a logically reversible operation.

It is not possible to characterize a particular physical pro-
cess that implements a logically irreversible operation as
thermodynamically reversible, independently of the specifi-
cation of the statistical state on which it acts. Does this mean
that we cannot characterize the physical process as thermo-
dynamically reversible at all?

This situation is not unknown in statistical mechanics, or
even phenomenological thermodynamics. Let us consider a
large container, divided in half by a removable partition, and
in the container is a macroscopic gas. The pressure on both
sides of the partition is initially equal, and the gas is always
kept in isothermal contact with a single heat bath. Removal
and reinsertion of the partition is clearly thermodynamically
reversible.

If we slowly, isothermally, slide the partition to the left,
compressing half the gas and expanding the other half, until
the compressed gas occupies only one-third of the container,
the pressure on the left side is double the pressure on the
right side �net work is required�. Removal and reinsertion of
the partition at this off-center position is not thermodynami-
cally reversible.

This thermodynamic irreversibility is not simply due to
the off-center position of the partition. Start with the partition
in the center, but now with gas initially prepared to be at
twice the pressure on the right-hand side of the container as
on the left-hand side. Simply removing the partition from the
center of the box is now thermodynamically irreversible. Iso-
thermally moving the partition to the left until the left-hand
side holds only one-third of the container’s volume equalizes
the pressure �and extracts work�. Now the off-center removal
and reinsertion of the partition become thermodynamically
reversible.

The parallel to the model used for logical operations
should be clear.20 A given sequence of actions cannot, in
general, be regarded as thermodynamically reversible inde-
pendently of the state on which they act. To describe a phe-
nomenological thermodynamic process as thermodynami-
cally reversible, it is necessary to specify both the sequence
of actions and the state on which they act in the definition of
the physical process. This carries over into statistical me-
chanics and, as we have seen above, into the thermodynam-
ics of computation.

The situation also bears some similarity to data compres-
sion from a signal source. A given coding scheme will be
optimal only for a particular distribution of probabilities of
signals from the source. Should the signals, in fact, be gen-
erated with a different probability distribution, then the mean
length of the encoded signals will be greater than the Shan-
non information of the source. That Shannon’s coding theo-
rem is of practical utility indicates that it is not inconceivable
that there may be information processing problems where the
probability distribution over the logical states may be avail-
able when designing optimal physical implementations.

4. Uncertain operations

If the logical operation acts upon a set of statistical states,
but it is uncertain which operations have acted upon the sys-
tem in the past, an additional source of thermodynamic irre-
versibility may occur. As an example of this, let us consider
a bit that has been deterministically set to either zero or one,
from a standard state a, and now needs to be reset to the
standard state.

If the first operation set the bit to zero, the operation is
UFZ�1�, and the work required was

�W0 = �E0 − TRS0� − �Ea − TRSa� , �169�

and if set to one, UFZ�0� gives

�W1 = �E1 − TRS1� − �Ea − TRSa� . �170�

If the reset operation is optimized with values w0+w1=1,
then it is RTZ�w0�,

�WR0 = �Ea − TRSa� − �E0 − TRS0� − kTR ln w0,

�WR1 = �Ea − TRSa� − �E1 − TRS1� − kTR ln w1, �171�

giving total costs

�WT0 = �WR0 + �W0 = − kTR ln w0 � 0,

�WT1 = �WR1 + �W1 = − kTR ln w1 � 0. �172�

The equalities can be reached by setting w0=1 or w1=1,
respectively, but this is only possible if the other is zero—
which would require an infinite amount of work if the wrong
operation had taken place.

If we assign nonzero probabilities to the set operations of
p0 and p1, then the expected cost for the cycle is

�WT = − kTR 	
i=0,1

pi ln wi � − kTR	
i

pi ln pi � 0,

�173�

with the equality occurring if wi= pi. Clearly this is a ther-
modynamically irreversible cycle, despite the fact that each
of the three logical operations �UFZ�1�, UFZ�0�, RTZ�w0�� can
be individually incorporated in a thermodynamically revers-
ible cycle. What is the source of the irreversibility?

There are a number of ways one can regard this. Both the
deterministic set operations are, in themselves, thermody-
namically reversible. It could be argued that the irreversibil-
ity in whichever of the �WT0 or the �WT1 cycles actually
took place is then through the reset operation, which was
designed for the possibility of either deterministic set opera-
tion.

A different way to perceive the situation is to regard it as
being either �WT0, which may be thermodynamically opti-
mized by setting w0=1, or �WT1, which may be optimized
by w1=1. In either case the cycle becomes thermodynami-
cally reversible. The source of thermodynamic irreversibility
would then be that the reset operation was not optimized for
the correct probabilities �which must now be regarded as
either p0=1 or p1=1, corresponding to which operation ac-
tually did take place�.

20Indeed, if we are considering a statistical mechanical N-atom
gas, with N=1, it is exactly the same model.
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Yet another way would be to consider a new class of
operation: an “uncertain” operation, where there is an uncer-
tainty as to which actual operation took place. In this case we
have an uncertain set operation, which could be defined as
p0UFZ�1�+ p1UFZ�0�. This operation has a work requirement

�WU = 	
i=0,1

pi�Ei − TRSi� − �Ea − TRSa� . �174�

Viewed as a logical operation, this would take as input logi-
cal state 0 with probability 1, and output states 0 and 1 with
probabilities p0 and p1. The optimal implementation of such
a logical transformation of information would be UFZ�p0�,
which has cost

�W = 	
i=0,1

pi�Ei − TRSi� − �Ea − TRSa� + kTR	
i

pi ln pi.

�175�

As a logical transformation of information, the uncertain set
operation is clearly sub-optimal. It is thermodynamically ir-
reversible, as it cannot be included in any thermodynami-
cally reversible cycle.

What is the “correct” way to view this? We are not sure
this is a well-posed question. However, what all three expla-
nations have in common is that the thermodynamic irrevers-
ibility is a consequence of the uncertainty over which the
logical operation took place. It is this that prevents the con-
struction of a thermodynamically reversible cycle.

Suppose we have a number of different processes, labeled
with �, and each implements a logical operation �P�� 
� ,���,
optimized for input state probabilities P���. The optimal cost
for operation � is

�W� = 	
�

P��
���E� − TRS� + kTR ln P��
���

− 	
�

P����E� − TRS� + kTR ln P���� , �176�

where P�� 
��=	�P�� 
� ,��P���.
We now assign a probability P��� to each logical opera-

tion occurring �and take for granted P�� ,��= P���P����. The
cost of this generic uncertain operation is

��W�� = 	
�,�,�

P��,�,��

��E� − E� − TRS� − S� − k ln
P��
��
P���

�� .

�177�

This produces the output states ��� with probabilities P���
=	�,�P�� 
� ,��P���P���.

Now, to complete the cycle, we consider an optimized
reset operation, which acts upon states ��� to produce the
standard state a, and an optimal operation that acts upon a
and produces the logical states ��� with probability P���.
Combining these two has the cost

�WR = 	
�

P����E� − TRS� + kTR ln P����

− 	
�

P����E� − TRS� + kTR ln P���� , �178�

giving a total cost for the cycle of

��W�� + �WR = kTR	
�,�

P��,��ln
P��,��

P���P���
� 0.

�179�

Equality is reached only if P�� ,��= P���P���, i.e., there is
no correlation between the occurrence of the � output states
and which � operation actually took place. The thermody-
namic irreversibility that occurs if P�� 
��� P��� does not
depend upon whether the operation required to restore the
original statistical state is logically reversible or logically
irreversible.

In the familiar case of the uncertain set–reset cycle there
is a compression of the logical state space during the reset
operation and the compensating increase in the non-
information-bearing degrees of freedom of system or envi-
ronment may give the impression that the source of the ther-
modynamic irreversibility is the logical irreversibility of the
reset operation. The generic uncertain operation shows that
this is not the case. In fact an optimal operation that restores
the P��� distribution from the P��� distribution could be
logically reversible and the cycle still be thermodynamically
irreversible provided P�� 
��� P���. It is the uncertainty
over which � operation took place that is the source of the
thermodynamic irreversibility.

As before, this situation has well-known parallels in stan-
dard statistical mechanics. The spread of gas molecules into
a box, shielded from any outside interference, can in prin-
ciple be reversed. �Spin-echo experiments have even demon-
strated similar reversals to this in the laboratory.� However,
this reversal is very sensitive to uncertainty in the outside
forces that act upon the gas. In a famous calculation, Borel
showed that the gravitational influence of remote stars could
change the microscopic state of an expanding macroscopic
gas within seconds. Reversing that expansion would be pos-
sible, in principle, if there was highly detailed knowledge of
the gravitational influence of the remote bodies on the gas
�or if microscopic state of the expanded gas molecules turned
out to be independant of that influence� but becomes impos-
sible when the gravitational influence is uncertain.

5. Partial operations

A third reason for the occurrence of thermodynamic irre-
versibility is that the physical implementation of the logical
operation is not able to take into account the existence of
correlations between systems, and can only act upon part of
the total logical state.21 We will show that, in this case, logi-
cally reversible operations are able to avoid the thermody-
namic irreversibility, although logically irreversible opera-
tions are still not always thermodynamically irreversible.

21See also �34�.
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Suppose the input logical states factorize into the product
of two subsystems, with the logical states of the first system
in the set ��� and the second system in ���, so the joint
system is described by the logical states ��� ,���. Now con-
sider a logical operation that acts only on the � states, with
probabilities P�� 
��. If the physical implementation of this
logical operation has no access to the � system, then the
physical implementation can only be optimized with respect
to the marginal probabilities

P��� = 	
�

P��,�� . �180�

The system ends up in output states from the product of the
states of the ��� and ��� systems, ��� ,���, with probabilities

P��,�� = 	
�

P��
��P��,�� . �181�

The resulting thermodynamic cost of the partially opti-
mized operation is

�WP = 	
�

P����E� − TR�S� − k ln P�����

− 	
�

P����E� − TR�S� − k ln P����� �182�

where P���=	�P�� ,�� and we have assumed

E�,� = E� + E�,

E�,� = E� + E�,

S�,� = S� + S�,

S�,� = S� + S�. �183�

An optimal operation for restoring the states �� ,��, with
probabilities P�� ,�� has a thermodynamic cost of

�WR = 	
�,�

P��,���E� − TR�S� − k ln P��,����

− 	
�,�

P��,���E� − TR�S� − k ln P��,����

�184�

so the net cost for the cycle is

�WR + �WP

kTR
= kTR	

�,�
P��,��ln

P��,��
P���

− 	
�,�

P��,��ln
P��,��
P��� � . �185�

This can be expressed as changes in conditional or correla-
tion information:

�WR + �WP

kTR
= − 	

�,�,�
P��,�,���ln P��
�� − ln P��
���

= − 	
�,�,�

P��,�,��ln
P��,��

P���P���

− ln
P��,��

P���P���
� . �186�

Use of the identity

P��,�
��P��
�� = P��,�
��P��
�� �187�

gives the form of the conditional correlations:

�WR + �WP

kTR
= − 	

�,�,�
P��,�,��ln

P��,�
��
P��
��P��
��

− ln
P��,�
��

P��
��P��
��� . �188�

As P�� 
� ,��= P�� 
��, then

P��,�
�� = P��
�,��P��
�� = P��
��P��
�� . �189�

The � states screen off any correlation between the � and �
states and the first term is zero, so

�WR + �WP

kTR
= 	

�,�,�
P��,�,��ln

P��,�
��
P��
��P��
��

� 0. �190�

Equality occurs if and only if � screens off any correlations
between � and �:

P��,�
�� = P��
��P��
�� . �191�

This can happen directly if there is no initial correlation
between the � and � systems, so that P�� ,��= P���P���.
With P�� 
� ,��= P�� 
�� it follows that P�� ,� ,��
= P�� ,��P��� and from that Eq. �191� holds, as might be
expected.

To see the effect of logical reversibility, rewrite Eq. �190�
as

�WR + �WP

kTR
= 	

�,�,�
P��,�,���ln P��
�,�� − ln P��
��� .

�192�

If the operation is logically reversible P�� 
��� �0,1�. This
gives

P��
�� = 0 ⇒ P��,�,�� = 0,

P��
�� = 1 ⇒ P��
�,�� = 1, �193�

and the summation is identically zero. Logically reversible
operations avoid the thermodynamically irreversible cost.22

22However, one should note that it is still possible for some logi-
cally irreversible operation to satisfy the conditions for thermody-
namic reversibility, Eq. �191�, for particular correlations between
the � and � systems.
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VII. CONCLUSIONS

The focus on the process of Landauer erasure can give the
impression that Landauer’s principle should be exclusively
about the thermodynamics of logically irreversible processes
and further that the heat generation of such processes implies
thermodynamic irreversibility: “To erase a bit of information
in an environment at temperature T requires dissipation of
energy �kT ln 2” �23,24�. “In erasing one bit …of informa-
tion one dissipates, on average, at least kBT ln 2 of energy
into the environment” �25�. “A logically irreversible opera-
tion must be implemented by a physically irreversible de-
vice, which dissipates heat into the environment” �26�. “Era-
sure of one bit of information increases the entropy of the
environment by at least k ln 2” ��27�, p. 27�. “Any logically
irreversible manipulation of data … must be accompanied by
a corresponding entropy increase in the non-information-
bearing degrees of freedom of the information processing
apparatus or its environment. Conversely, it is generally ac-
cepted that any logically reversible transformation of infor-
mation can in principle be accomplished by an appropriate
physical mechanism operating in a thermodynamically re-
versible fashion.” �1�.

However, it should be noted that not all advocates of Lan-
dauer’s principle regard the process of erasure as necessarily
thermodynamically irreversible: “A logically irreversible op-
eration …may be thermodynamically reversible or not de-
pending on the data to which it is applied. If it is applied to
random data …it is thermodynamically reversible, because it
decreases the entropy of the data while increasing the en-
tropy of the environment by the same amount” �1�.

In �3� it was argued that there exists a valid thermody-
namically reverse process to Landauer erasure, but which
needs to be classified as logically indeterministic, which we
called reverse Landauer erasure. Consideration of the ther-
modynamic consequences of the existence of this process led
us to conclude that there was no convincing evidence that
logically irreversible operations had special thermodynamic
characteristics. Instead, we hypothesized that a generalized
form of Landauer’s principle should be possible that made
no reference to irreversibility, whether logical or thermody-
namic. This was expressed in two conjectures ��3�, p. 362�:

Conjecture E. Any logically irreversible transformation of
information can in principle be accomplished by an appro-
priate physical mechanism operating in a thermodynamically
reversible fashion.

Conjecture F. A logical operation needs to generate heat
equal to at least −kT ln 2 times the change in the total quan-
tity of Shannon information over the operation, or

�W � kT ln 2�Hi − Hf� .

In this paper we have both proved and generalized these
conjectures. Our approach has been to take the widest defi-
nition of logical operations available and the most general
procedure for physically implementing these operations that
we can. This requires us to consider logically indeterministic
operations as well as deterministic ones, logically reversible
operations as well as irreversible ones.

Other papers have made some consideration of Landauer
erasure in the context of non-uniform temperatures �28�, en-
tropy �29,30�, and energy �25�, while �31� combines varying
entropy and energy. Nonuniform input probabilities are con-
sidered in the proofs of �25,29�. The thermodynamics of
logically indeterministic operations does not seem to have
been considered before �2,3�, although �32� �Chap. VI� is
close, and it is noticeable that �1� refers throughout to deter-
ministic computation. Recently, a paper has appeared by Tur-
gut �7� deriving similar results using classical phase space
arguments.

General proofs of Landauer’s principle seem hard to come
by �as pointed out in �5�� although �25� derives similar re-
sults to those of Sec. III E, but restricted to the RTZ operation,
and under the assumption that logical states are represented
by pure quantum states �an assumption shared with �33��.
Here we allow logical states to be represented by density
matrices and consider any logical operation. We have con-
sidered the most general setting for physically implementing
classical logical operations, covering and extending these
earlier results. We derive the most general statement of Lan-
dauer’s principle, prove it cannot be exceeded and give a
limiting process which can achieve it.

The general statement of Landauer’s principle we arrived
at is the following.

Generalized Landauer principle. A physical implementa-
tion of a logical transformation of information has minimal
expectation value of the work requirement given by

��W� � ��E� − T�S , �194�

where ��E� is the change in the mean internal energy of the
information processing system, �S the change in the Gibbs–
von Neumann entropy of that system, and T the temperature
of the heat bath into which any heat is absorbed. The equality
is reachable, in principle, by any logical operation, and if the
equality is reached the physical implementation is thermody-
namically reversible.

We have then shown how various additional assumptions
and simplifications can lead to more familiar versions of
Landauer’s principle that can be found in the literature and
these are special cases of the GLP. Generalizations about the
relationship between information processing and thermody-
namic entropy based upon these special cases can be mis-
leading.

In particular, we have argued, counter to a widespread
version of Landauer’s principle, that there is nothing in prin-
ciple that prevents a logically irreversible operation from be-
ing implemented in a thermodynamically reversible manner.
What differs between logically irreversible operations and
logically reversible operations is that to thermodynamically
optimize physical implementations of the former it is neces-
sary to take into account the probability distribution over the
complete set of input logical states. A physical implementa-
tion of a logically irreversible operation, optimized for a par-
ticular input probability distribution, will not be thermody-
namically irreversible for a different input probability
distribution. If the physical implementation cannot access a
correlated system, then logically irreversible operations may
incur additional costs.
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As the practical business of actually building physical de-
vices to implement logical operations will typically not be
able to make such optimizations, it is natural to assume an
equiprobable distribution over a subsystem, and expect ther-
modynamic irreversibility. Nevertheless the point remains: in
principle it is always possible to physically implement logi-
cally irreversible transformations of information in thermo-
dynamically reversible ways. There are many practical rea-
sons why a logically irreversible operation may not be
thermodynamically optimized, and it is clearly important and
useful to explore such problems. In this paper, however, we
are primarily concerned with the question: What is the fun-
damental limit for thermodynamical optimization of the
physical implementation of a given logical operation?

We have demonstrated that, under the same conditions of
uniform computing that imply that logically deterministic,
irreversible operations generate heat, logically indeterminis-
tic, reversible operations extract heat from the environment
which can be converted into work. At the same time we have
demonstrated that, under other conditions, adiabatic equilib-
rium computing, information processing is able to progress
without any exchange of work or heat, regardless of the type
of logical operation.

The thermodynamic reversibility of all logical operations
is, of course, based upon the definition of thermodynamic
reversibility given in Secs. VI C and VI E. Other approaches
to thermodynamics �such as �4–6�� use different concepts of
entropy and correspondingly different definitions of thermo-
dynamic irreversibility from those in this paper. Ultimately
the most important question is not what particular quantity
one chooses to label as the “thermodynamic” entropy. The
GLP we have derived here is valid, whether one chooses to
regard the Gibbs–von Neumann entropy as the true thermo-
dynamic entropy, or not. What is important is the actual work
required to drive a system, the actual heat generated by that
system. As there is no disagreement over the fundamental
microscopic dynamics, it would be surprising if we were
unable to be able to agree on these values, regardless of the
definition of entropy to which we choose to adhere.
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APPENDIX: ONE-BIT LOGICAL OPERATIONS

1. Do nothing (IDN)

The simplest operation is

P�� = 0
� = 0� = 1,

P�� = 0
� = 1� = 0,

P�� = 1
� = 0� = 0,

P�� = 1
� = 1� = 1, �A1�

giving

P�� = 0
� = 0� = 1,

P�� = 0
� = 1� = 0,

P�� = 1
� = 0� = 0,

P�� = 1
� = 1� = 1, �A2�

and is logically deterministic and reversible.

2. Logical NOT (NOT)

Logical NOT, acting upon an input bit with probability p
of being in state 0, is very simple:

P�� = 0
� = 0� = 0,

P�� = 0
� = 1� = 1,

P�� = 1
� = 0� = 1,

P�� = 1
� = 1� = 0, �A3�

giving

P�� = 0
� = 0� = 0,

P�� = 0
� = 1� = 1,

P�� = 1
� = 0� = 1,

P�� = 1
� = 1� = 0. �A4�

This is logically deterministic and reversible.

3. Reset to zero: [RTZ(p)]

If the input state 0 occurs with probability p, then the
RTZ�p� operation has the properties

P�� = 0
� = 0� = 1,

P�� = 0
� = 1� = 1, �A5�

giving

P�� = 0
� = 0� = p ,

P�� = 1
� = 0� = 1 − p . �A6�

This is logically deterministic and irreversible. As ∀ � P��
=1 
��=0, the state �=1 is not an output state of the opera-
tion and we leave it out of the table.
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4. Unset from zero [UFZ(p)]

The reverse operation to RTZ, where the state 0 is taken to
state 0 with probability p, will be called here the unset from
zero operation. In �3� this operation was described in terms
of the physical process that reverses LE, so was called re-
verse Landauer erasure or RLE. In this paper we will refer to
the logical operation as UFZ, and to the specific physical
process that can be used to embody it as RLE. This operation
may also be characterized as a random number generator:

P�� = 0
� = 0� = p ,

P�� = 1
� = 0� = 1 − p , �A7�

giving

P�� = 0
� = 0� = 1,

P�� = 0
� = 1� = 1. �A8�

This is indeterministic but reversible. As ∀ � P��=1 
��
=0 the state �=1 is not an input state of the operation and
we leave it out of the table.

5. Randomize [RND(p ,p�)]

This operation takes an input probability of p of the state
being 0 and produces 0 with an output probability of p�,
regardless of input state:

P�� = 0
� = 0� = p�,

P�� = 0
� = 1� = p�,

P�� = 1
� = 0� = 1 − p�,

P�� = 1
� = 1� = 1 − p�, �A9�

giving

P�� = 0
� = 0� = p ,

P�� = 0
� = 1� = p ,

P�� = 1
� = 0� = 1 − p ,

P�� = 1
� = 1� = 1 − p . �A10�

This is indeterministic and irreversible.
We note that RTZ�p��RND�p ,1� and UFZ�p��RND�1, p�.

6. General one bit [GOB(p ,p00,p11)]

Finally, we consider the most generic operation possible
for one input bit and one output bit. The operation can be
wholly defined by one input probability p and two condi-
tional probabilities p00 and p11:

P�� = 0� = p ,

P�� = 1� = 1 − p ,

P�� = 0
� = 0� = p00,

P�� = 0
� = 1� = 1 − p11,

P�� = 1
� = 0� = 1 − p00,

P�� = 1
� = 1� = p11, �A11�

giving

P�� = 0,� = 0� = pp00,

P�� = 0,� = 1� = p�1 − p00� ,

P�� = 1,� = 0� = �1 − p��1 − p11� ,

P�� = 1,� = 1� = �1 − p�p11, �A12�

and

P�� = 0� = pp00 + �1 − p��1 − p11� ,

P�� = 1� = p�1 − p00� + �1 − p�p11, �A13�

so

P�� = 0
� = 0� =
pp00

pp00 + �1 − p��1 − p11�
,

P�� = 0
� = 1� =
p�1 − p00�

p�1 − p00� + �1 − p�p11
,

P�� = 1
� = 0� =
�1 − p��1 − p11�

pp00 + �1 − p��1 − p11�
,

P�� = 1
� = 1� =
�1 − p�p11

p�1 − p00� + �1 − p�p11
. �A14�

In general, this is logically indeterministic and irreversible,
but can become logically reversible or deterministic under
the right limits:

IDN � GOB�p,1,1� ,

NOT � GOB�p,0,0� ,

RTZ�p� � GOB�p,1,0� ,

UFZ�p� � GOB�1,p,− � ,

RND�p,p�� � GOB�p,p�,1 − p�� . �A15�
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